PREFACE TO THE
SECOND EDITION

The many developments that have occurred in the physics of quantum systems since
the publication of the first edition of this book—particularly in the field of elementary
particles—have made apparent the need for a second edition. In preparing it, we
solicited suggestions from the instructors that we knew to be using the book in their
courses (and also from some that we knew were not, in order to determine their
objections to the book). The wide acceptance of the first edition made it possible
for us to obtain a broad sampling of thought concerning ways to make the second
edition more useful. We were not able to act on all the suggestions that were re-
ceived, because some were in conflict with others or were impossible to carry out
for technical reasons. But we certainly did respond to the general consensus of these
suggestions.

Many users of the first edition felt that new topics, typically more sophisticated
aspects of quantum mechanics such as perturbation theory, should be added to the
book. Yet others said that the level of the first edition was well suited to the course
they teach and that it should not be changed. We decided to try to satisfy both
groups by adding material to the new edition in the form of new appendices, but to
do it in such a way as to maintain the decoupling of the appendices and the text
that characterized the original edition. The more advanced appendices are well inte-
grated in the text but it is a one-way, not two-way, integration. A student reading
one of these appendices will find numerous references to places in the text where the
development is motivated and where its results are used. On the other hand, a student
who does not read the appendix because he is in a lower level course will not be
frustrated by many references in the text to material contained in an appendix he
does not use. Instead, he will find only one or two brief parenthetical statements in
the text advising him of the existence of an optional appendix that has a bearing on
the subject dealt with in the text.

The appendices in the second edition that are new or are significantly changed are:
Appendix A, The Special Theory of Relativity (a number of worked-out examples
added and an important calculation simplified); Appendix D, Fourier Integral De-
scription of a Wave Group (new); Appendix G, Numerical Solution of the Time-
Independent Schroedinger Equation for a Square Well Potential (completely rewritten
to include a universal program in BASIC for solving second-order differential equa-
tions on microcomputers); Appendix J, Time-Independent Perturbation Theory (new);
Appendix K, Time-Dependent Perturbation Theory (new); Appendix L, The Born
Approximation (new); Appendix N, Series Solutions of the Angular and Radial
Equations for a One-Electron Atom (new); Appendix Q, Crystallography (new);
Appendix R, Gauge Invariance in Classical and Quantum Mechanical Electromag-
netism (new). Problem sets have been added to the ends of many of the appendices,
both old and new. In particular, Appendix A now contains a brief but comprehensive
set of problems for use by instructors who begin their “modern physics” course
with a treatment of relativity.
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A large number of small changes and additions have been made to the text to
improve and update it. There are also several quite substantial pieces of new mate-
rial, including: the new Section 13-8 on clectron-positron annihilation in solids; the
additions to Section 16-6 on the Mossbauer effect; the extensive modernization of
the last half of the introduction to elementary particles in Chapter 17; and the en-
tirely new Chapter 18 treating the developments that have occurred in particle phy-
sics since the first edition was written.

We were very fortunate to have secured the services of Professor David Caldwell
of the University of California, Santa Barbara, to write the new material in Chapters
17 and 18, as well as Appendix R. Only a person who has been totally immersed in
rescarch in particle physics could have done what had to be done to produce a brief
but understandable treatment of what has happened in that field in recent years.
Furthermore, since Caldwell is a colleague of the senior author, it was casy to have
the interaction required to be sure that this new material was closely integrated into
the earlier parts of the book, both in style and in content. Prepublication reviews
have made it clear that Caldwell’s material is a very strong addition to the book.

Professor Richard Christman. of the U.S. Coast Guard Academy, wrote the new
material in Section 13-8, Section 16-6, and Appendix Q, receiving significant input
from the authors. We are very pleased with the results.

The answers to selected problems, found in Appendix S, were prepared by Profes-
sor Edward Derringh, of the Wentworth Institute of Technology. He also edited the
new additions to the problem sets and prepared a manual giving detailed solutions
to most of the problems. The solutions manual is available to instructors from the
publisher.

It is a pleasure to express our deep appreciation to the people mentioned above.
We also thank Frank T. Avignone, IIL University of South Carolina; Edward Cecil,
Colorado School of Mines; L. Edward Millet, California State University, Chico:
and James T. Tough. The Ohio State University, for their very useful prepublication
revicws,

The following people offered suggestions or comments which helped in the develop-
ment of the second edition: Alan H. Barrett, Massachusetts Institute of Technology;
Richard H. Behrman, Swarthmore College: George F. Bertsch, Michigan State Uni-
versity: Richard N. Boyd, The Ohio State University; Philip A. Casabella, Rensselaer
Polytechnic Institute; C. Dewey Cooper, University of Georgia; James E. Draper,
University of California at Davis; Arnold Engler, Carnegie-Mellon University; A. T.
Fromhold, Jr., Auburn University; Ross Garrett, University of Auckland; Russell
Hobbie, University of Minnesota; Bei-Lok Hu, University of Maryland; Hillard Hun-
tington. Rensselaer Polytechnic Institute; Mario lona, University of Denver; Ronald
G. Johnson, Trent University; A. L. Laskar, Clemson University; Charles W. Leming,
Henderson State University: Luc Leplae, University of Wisconsin-Milwaukee; Ralph
D. Meeker. Illinois Benedictine College; Roger N. Metz, Colby College; Ichiro Miya-
gawa. University of Alabama; J. A. Moore, Brock University; John J. O’'Dwyer, State
University of New York at Oswego; Douglas M. Potter, Rutgers State University;
Russell A. Schafler, Lehigh University; John W. Watson, Kent State University; and
Robert White. University of Auckland. We appreciate their contribution.

Santa Barbara, California Robert Eisberg
Troy, New York Robert Resnick
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The basic purpose of this book is to present clear and valid treatments of the prop-
erties of almost all of the important quantum systems from the point of view of
elementary quantum mechanics. Only as much quantum mechanics is developed as is
required to accomplish the purpose. Thus we have chosen to emphasize the applica-
tions of the theory more than the theory itself. In so doing we hope that the book
will be well adapted to the attitudes of contemporary students in a terminal course
on the phenomena of quantum physics. As students obtain an insight into the tre-
mendous explanatory power of quantum mechanics, they should be motivated to
learn more about the theory. Hence we hope that the book will be equally well
adapted to a course that is to be followed by a more advanced course in formal
quantum mechanics.

The book is intended primarily to be used in a one year course for students who
have been through substantial treatments of elementary differential and integral cal-
culus and of calculus level elementary classical physics. But it can also be used in
shorter courses. Chapters 1 through 4 introduce the various phenomena of early
quantum physics and develop the essential ideas of the old quantum theory. These
chapters can be gone through fairly rapidly, particularly for students who have had
some prior exposure to quantum physics. The basic core of quantum mechanics, and
its application to one- and two-electron atoms, is contained in Chapters 5 through
8 and the first four sections of Chapter 9. This core can be covered well in appre-
ciably less than half a year. Thus the instructor can construct a variety of shorter
courses by adding to the core material from the chapters covering the essentially
independent topics: multielectron atoms and molecules, quantum statistics and solids,
nuclei and particles.

Instructors who require a similar but more extensive and higher level treatment
of quantum mechanics, and who can accept a much more restricted coverage of the
applications of the theory, may want to use Fundamentals of Modern Physics by
Robert Eisberg (John Wiley & Sons, 1961), instead of this book. For instructors requir-
ing a more comprehensive treatment of special relativity than is given in Appendix A,
but similar in level and pedagogic style to this book, we recommend using in addition
Introduction to Special Relativity by Robert Resnick (John Wiley & Sons, 1968).

Successive preliminary editions of this book were developed by us through a pro-
cedure mvolving intensive classroom testing in our home institutions and four other
schools. Robert Eisberg then completed the writing by significantly revising and
extending the last preliminary edition. He is consequently the senior author of this
book. Robert Resnick has taken the lead in developing and revising the last prelimi-
nary edition so as to prepare the manuscript for a modern physics counterpart at a
somewhat lower level. He will consequently be that book’s senior author.

The pedagogic features of the book, some of which are not usually found in books
at this level, were proven in the classroom testing to be very successful. These fea-
tures are: detailed outlines at the beginning of each chapter, numerous worked out
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examples in each chapter, optional sections in the chapters and optional appendices,
summary sections and tables, sets of questions at the end of each chapter, and long
and varied sets of thoroughly tested problems at the end of each chapter, with subsets
of answers at the end of the book. The writing is careful and expansive. Hence we
believe that the book is well suited to self-learning and to self-paced courses.

We have emploved the MKS (or SI) system of units, but not slavishly so. Where
general practice in a particular field involves the use of alternative units, they are
used here.

It is a pleasure to express our appreciation to Drs. Harriet Forster, Russell Hobbie,
Stuart Meyer, Gerhard Salinger, and Paul Yergin for constructive reviews, to Dr.
David Swedlow for assistance with the evaluation and solutions of the problems, to
Dr. Benjamin Chi for assistance with the figures, to Mr. Donald Deneck for editorial
and other assistance, and to Mrs. Cassie Young and Mrs. Carolyn Clemente for
typing and other secretarial services.

Santa Barbara, California Robert Eisberg
Troy, New York Robert Resnick
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Chap. 1

1-1 INTRODUCTION

At a meeting of the German Physical Society on Dec. 14, 1900, Max Planck read his
paper, “On the Theory of the Energy Distribution Law of the Normal Spectrum.”
This paper, which first attracted little attention, was the start of a revolution in phys-
ics. The date of its presentation is considered to be the birthday of quantum physics,
although it was not until a quarter of a century later that modern quantum mechan-
ics, the basis of our present understanding, was developed by Schroedinger and
others. Many paths converged on this understanding, each showing another aspect
of the breakdown of classical physics. In this and the following three chapters we
shall examine the major milestones, of what is now called the old quantum theory, that
led to modern quantum mechanics. The experimental phenomena which we shall
discuss in connection with the old quantum theory span all the disciplines of classical
physics: mechanics, thermodynamics, statistical mechanics, and electromagnetism.
Their repeated contradiction of classical laws, and the resolution of these conflicts on
the basis of quantum ideas, will show us the need for quantum mechanics. And our
study of the old quantum theory will allow us to more easily obtain a deeper under-
standing of quantum mechanics when we begin to consider it in the fifth chapter.

As is true of relativity (which is treated briefly in Appendix A), quantum physics
represents a generalization of classical physics that includes the classical laws as spe-
cial cases. Just as relativity extends the range of application of physical laws to the
region of high velocities, so quantum physics extends that range to the region of small
dimensions. And just as a universal constant of fundamental significance, the velocity
of light ¢, characterizes relativity, so a universal constant of fundamental significance,
now called Planck’s constant h, characterizes quantum physics. It was while trying to
explain the observed properties of thermal radiation that Planck introduced this con-
stant in his 1900 paper. Let us now begin to examine thermal radiation ourselves. We
shall be led thereby to Planck’s constant and the extremely significant related
quantum concept of the discreteness of energy. We shall also find that thermal radia-
tion has considerable importance and contemporary relevance in its own right. For
instance, the phenomenon has recently helped astrophysicists decide among compet-
ing theories of the origin of the universe. Another example is given by the rapidly
developing technology of solar heating, which depends on the thermal radiation
received by the earth from the sun.

1-2 THERMAL RADIATION

The radiation emitted by a body as a result of its temperature is called thermal
radiation. All bodies emit such radiation to their surroundings and absorb such radia-
tion from them. If a body is at first hotter than its surroundings, it will cool off be-
cause its rate of emitting energy exceeds its rate of absorbing energy. When thermal
equilibrium is reached the rates of emission and absorption are equal.

Matter in a condensed state (i.e., solid or liquid) emits a continuous spectrum of
radiation. The details of the spectrum are almost independent of the particular mate-
rial of which a body is composed, but they depend strongly on the temperature. At
ordinary temperatures most bodies are visible to us not by their emitted light but by
the light they reflect. If no light shines on them we cannot see them. At very high
temperatures, however, bodies are self-luminous. We can see them glow in a darkened
room; but even at temperatures as high as several thousand degrees Kelvin well over
90%, of the emitted thermal radiation is invisible to us, being in the infrared part of
the electromagnetic spectrum. Therefore, self-luminous bodies are quite hot.

Consider, for example, heating an iron poker to higher and higher temperatures
in a fire, periodically withdrawing the poker from the fire long enough to observe its
properties. When the poker is still at a relatively low temperature it radiates heat, but
it is not visibly hot. With increasing temperature the amount of radiation that the



poker emits increases very rapidly and visible effects are noted. The poker assumes a
dull red color, then a bright red color, and, at very high temperatures, an intense
blue-white color. That is, with increasing temperature the body emits more thermal
radiation and the frequency of the most intense radiation becomes higher.

The relation between the temperature of a body and the frequency spectrum of the
emitted radiation is used in a device called an optical pyrometer. This is essentially a
rudimentary spectrometer that allows the operator to estimate the temperature of a
hot body, such as a star, by observing the color, or frequency composition, of the
thermal radiation that it emits. There is a continuous spectrum of radiation emitted,
the eye seeing chiefly the color corresponding to the most intense emission in the
visible region. Familiar examples of objects which emit visible radiation include hot
coals, lamp filaments, and the sun.

Generally speaking, the detailed form of the spectrum of the thermal radiation
emitted by a hot body depends somewhat upon the composition of the body. How-
ever, experiment shows that there is one class of hot bodies that emits thermal spectra
of a universal character. These are called hlackbodies, that is, bodies that have sur-
faces which absorb all the thermal radiation incident upon them. The name is ap-
propriate because such bodies do not reflect light and appear black when their tem-
peratures are low enough that they are not self-luminous. One example of a (nearly)
blackbody would be any object coated with a diffuse layer of black pigment, such as
lamp black or bismuth black. Another, quite different, example will be described
shortly. Independent of the details of their composition, it is found that all black-
bodies at the same temperature emit thermal radiation with the same spectrum. This
general fact can be understood on the basis of classical arguments involving thermo-
dynamic equilibrium. The specific form of the spectrum, however, cannot be obtained
from thermodynamic arguments alone. The universal properties of the radiation
emitted by blackbodies make them of particular theoretical interest and physicists
sought to explain the specific features of their spectrum.

The spectral distribution of blackbody radiation is specified by the quantity R,(v),
called the spectral radiancy, which is defined so that R (v)dv is equal to the energy
emitted per unit time in radiation of frequency in the interval v to v + dv from a unit
area of the surface at absolute temperature T. The earliest accurate measurements of
this quantity were made by Lummer and Pringsheim in 1899. They used an instru-
ment essentially similar to the prism spectrometers used in measuring optical spectra,
except that special materials were required for the lenses, prisms, etc., so that they
would be transparent to the relatively low frequency thermal radiation. The experi-
mentally observed d}:pendence of Ry(v) on v and T is shown in Figure 1-1.

Distribution functions, of which spectral radiancy is an example, are very common in physics.
For example, the Maxwellian speed distribution function (which looks rather like one of the
curves in Figure 1-1) tells us how the molecules in a gas at a fixed pressure and temperature
are distributed according to their speed. Another distribution function that the student has
probably already seen is the one (which has the form of a decreasing exponential) specifying
the times of decay of radioactive nuclei in a sample containing nuclei of a given species, and
he has certainly seen a distribution function for the grades received on a physics exam.

The spectral radiancy distribution function of Figure 1-1 for a blackbody of a given area
and a particular temperature, say 1000°K, shows us that: (1) there is very little power radiated
in a frequency interval of fixed size dv if that interval is at a frequency v which is very small
compared to 10'* Hz The power is zero for v equal to zero. (2) The power radiated in the
interval dv increases rapidly as v increases from very small values. (3) It maximizes for a
value of v ~ 1.1 x 10'* Hz. That is, the radiated power is most intense at that frequency.
(4) Above ~ 1.1 x 10'* Hz the radiated power drops slowly but continuously as v increases.
It is zero again when v approaches infinitely large values.

The two distribution functions for the higher values of temperature, 1500°K and 2000°K.
displayed in the figure show us that (5) the frequency at which the radiated power is most

€
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Figure 1-1 The spectral radiancy of a blackbody radiator as a function of the frequency
of radiation, shown for temperatures of the radiator of 1000°K, 1500°K, and 2000°K. Note
that the frequency at which the maximum radiancy occurs (dashed line) increases linearly
with increasing temperature, and that the total power emitted per square meter of the
radiator {area under curve) increases very rapidly with temperature.

intense increases with increasing temperature. Inspection will verify that this frequency in-
creases linearly with temperature. (6) The total power radiated in all frequencies increases with
increasing temperature, and it does so more rapidly than linearly. The total power radiated
at a particular temperature is given simply by the area under the curve for that temperature,
[§ Rp(v)dv, since Ry(v)dv is the power radiated in the frequency interval from v to v + dv.

The integral of the spectral radiancy R,(v) over all v is the total energy emitted
per unit time per unit area from a blackbody at temperature T. It is called the
radiancy Ry. That is

o

Rp= f Ry(v) dv (1-1)

(1]

As we have seen in the preceding discussion of Figure 1-1, R, increases rapidly with
increasing temperature. In fact, this result is called Stefan’s law, and it was first stated
in 1879 in the form of an empirical equation

Ry =oT* (1-2)
where

=567 x 1078 W/m2-°K*

is called the Stefan-Boltzmann constant. Figure 1-1 also shows us that the spectrum
shifts toward higher frequencies as T increases. This result is called Wien’s displace-
ment law

Viag o6 T (1-3a)
where v,,,, is the frequency v at which Ry(v) has its maximum value for a partic-
ular T. As T increases, v, is displaced toward higher frequencies. All these results
are in agreement with the familiar experiences discussed earlier, namely that the
amount of thermal radiation emitted increases rapidly (the poker radiates much more
heat energy at higher temperatures), and the principal frequency of the radiation
becomes higher (the poker changes color from dull red to blue-white), with increasing
temperature.



Figure 1-2 A cavity in a body connected by a small
hole to the outside. Radiation incident on the hole is
completely absorbed after successive reflections on
the inner surface of the cavity. The hole absorbs like
a blackbody. In the reverse process, in which radiation
leaving the hole is built up of contributions emitted
from the inner surface, the hole emits like a blackbody.

Another example of a blackbody, which we shall see to be particularly important,
can be found by considering an object containing a cavity which is connected to the
outside by a small hole, as in Figure 1-2. Radiation incident upon the hole from
the outside enters the cavity and is reflected back and forth by the walls of the
cavity, eventually being absorbed on these walls. If the area of the hole is very small
compared to the area of the inner surface of the cavity, a negligible amount of the
incident radiation will be reflected back through the hole. Essentially all the radia-
tion incident upon the hole is absorbed; therefore, the hole must have the properties of
the surface of a blackbody. Most blackbodies used in laboratory experiments are
constructed along these lines.

Now assume that the walls of the cavity are uniformly heated to a temperature
T. Then the walls will emit thermal radiation which will fill the cavity. The small
fraction of this radiation incident from the inside upon the hole will pass through
the hole. Thus the hole will act as an emitter of thermal radiation. Since the hole
must have the properties of the surface of a blackbody, the radiation emitted by
the hole must have a blackbody spectrum; but since the hole is merely sampling
the thermal radiation present inside the cavity, it is clear that the radiation in
the cavity must also have a blackbody spectrum. In fact, it will have a blackbody
spectrum characteristic of the temperature T on the walls, since this is the only
temperature defined for the system. The spectrum emitted by the hole in the cavity
is specified in terms of the energy flux Ry (v). It is more useful, however, to specify
the spectrum of radiation inside the cavity, called cavity radiation, in terms of an
energy density, pp(v), which is defined as the energy contained in a unit volume
of the cavity at temperature 7T in the frequency interval v to v + dv. It is evident
that these quantities are proportional to one another; that is

pr(v) oc Ry(v) (1-4)
Hence, the radiation inside a cavity whose walls are at temperature T has the
same character as the radiation emitted by the surface of a blackbody at temper-
ature T. It is convenient experimentally to produce a blackbody spectrum by means
of a cavity in a heated body with a hole to the outside, and it is convenient in theo-
retical work to study blackbody radiation by analyzing the cavity radiation because
it is possible to apply very general arguments to predict the properties of cavity
radiation.

Example 1-1. (a) Since Av = ¢, the constant velocity of light, Wien’s displacement law (1-3a)
can also be put in the form

Amax T = const (1-3b)
where A, is the wavelength at which the spectral radiancy has its maximum value for a
particular temperature 7. The experimentally determined value of Wien’s constant is 2.898 x
107 m-"K. If we assume that stellar surfaces behave like blackbodies we can get a good
estimate of their temperature by measuring /.. For the sun A, = 5100 A, whereas for the
North Star /., = 3500 A. Find the surface temperature of these stars. (One angstrom =
1A=10"1"m)

NOILVIAVYY TYWHIHL 2-1 988 G
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P For the sun, T =2.898 x 10”7 m-"K/5100 x 10~ '® m = 5700°K. For the North Star,
T = 2898 x 1073 m-"K/3500 x 10™'® m = 8300°K.

At 5700°K the sun’s surface is near the temperature at which the greatest part of its radia-
tion lies within the visible region of the spectrum. This suggests that over the ages of human
evolution our eyes have adapted to the sun to become most sensitive to those wavelengths
which it radiates most intensely. <

(b) Using Stefan’s law, (1-2), and the temperatures just obtained, determine the power ra-
diated from 1 cm? of stellar surface.

» For the sun
Ry =06T* =567 x 10 ® W/m?-°K* x (5700°K)*
= 5.90 x 107 W/m? ~ 6000 W/cm?
For the North Star
Ry = oT* =5.67 x 1078 W/m2-°K* x (8300°K)*
=271 x 10® W/m? ~ 27,000 W/cm? -l

Example 1-2. Assume we have two small opaque bodies a large distance from one another
supported by fine threads in a large evacuated enclosure whose walls are opaque and kept at
a constant temperature. In such a case the bodies and walls can exchange energy only by means
of radiation. Let e represent the rate of emission of radiant energy by a body and let a repre-
sent the rate of absorption of radiant energy by a body. Show that at equilibrium

2y e
iz S, FOR (1-5)
a a;

This relation, (1-5), is known as Kirchhoff’s law for radiation.

P The equilibrium state is one of constant temperature throughout the enclosed system, and
in that state the emission rate necessarily equals the absorption rate for each body. Hence
ey = ay and €y =d,y

Therefore

&1_,_¢©
a, L)
If one body, say body 2, is a blackbody, then a, > a, because a blackbody is a better ab-
sorber than a non-blackbody. Hence, it follows from (1-5) that e, > e;. The observed fact that
good absorbers are also good emitters is thus predicted by Kirchhoff’s law. «

1-3 CLASSICAL THEORY OF CAVITY RADIATION

Shortly after the turn of the present century, Rayleigh, and also Jeans, made a calcu-
lation of the energy density of cavity (or blackbody) radiation that points up a serious
conflict between classical physics and experimental results. This calculation is similar
to calculations that arise in considering many other phenomena (e.g., specific heats
of solids) to be treated later. We present the details here, but as an aid in guiding us
through the calculations we first outline their general procedure.

Consider a cavity with metallic walls heated uniformly to temperature T. The walls
emit electromagnetic radiation in the thermal range of frequencies. We know that
this happens, basically, because of the accelerated motions of the electrons in the
metallic walls that arise from thermal agitation (see Appendix B). However, it is not
necessary to study the behavior of the electrons in the walls of the cavity in detail.
Instead, attention is focused on the behavior of the electromagnetic waves in the in-
terior of the cavity. Rayleigh and Jeans proceeded as follows. First, classical electro-
magnetic theory is used to show that the radiation inside the cavity must exist in
the form of standing waves with nodes at the metallic surfaces. By using geometrical
arguments, a count is made of the number of such standing waves in the frequency
interval v to v + dv, in order to determine how the number depends on v. Then a



result of classical kinetic theory is used to calculate the average total energy of these
waves when the system is in thermal equilibrium. The average total energy depends,
in the classical theory, only on the temperature T. The number of standing waves in
the frequency interval times the average energy of the waves, divided by the volume
of the cavity, gives the average energy content per unit volume in the frequency in-
terval v to v + dv. This is the required quantity, the energy density p,(v). Let us now do
it ourselves.

We assume for simplicity that the metallic-walled cavity filled with electromagnetic
radiation is in the form of a cube of edge length a, as shown in Figure 1-3. Then
the radiation reflecting back and forth between the walls can be analyzed into three
components along the three mutually perpendicular directions defined by the edges
of the cavity. Since the opposing walls are parallel to each other, the three compo-
nents of the radiation do not mix, and we may treat them separately. Consider first
the x component and the metallic wall at x = 0. All the radiation of this component
which is incident upon the wall is reflected by it, and the incident and reflected waves
combine to form a standing wave. Now, since electromagnetic radiation is a trans-
verse vibration with the electric field vector E perpendicular to the propagation direc-
tion, and since the propagation direction for this component is perpendicular to the
wall in question, its electric field vector E is parallel to the wall. A metallic wall
cannot, however, support an electric field parallel to the surface, since charges can
always flow in such a way as to neutralize the electric field. Therefore, E for this
component must always be zero at the wall. That is, the standing wave associated
with the x-component of the radiation must have a node (zero amplitude) at x = 0.
The standing wave must also have a node at x = a because there can be no parallel
electric field in the corresponding wall. Furthermore, similar conditions apply to the
other two components; the standing wave associated with the y component must have
nodes at y = 0 and y = g, and the standing wave associated with the z component
must have nodes at z = 0 and z = a. These conditions put a limitation on the possible
wavelengths, and therefore on the possible frequencies, of the electromagnetic radia-
tion in the cavity.

Figure 1-3 A metallic walled cubical cavity filled with electromagnetic radiation, showing
three noninterfering components of that radiation bouncing back and forth between the
walls and forming standing waves with nodes at each wall.
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Now we shall consider the question of counting the number of standing waves
with nodes on the surfaces of the cavity, whose wavelengths lie in the interval 4 to
4 + di corresponding to the frequency interval v to v + dv. To focus attention on
the ideas involved in the calculation, we shall first treat the x component alone; that
is, we shall consider the simplified, but artificial, case of a “one-dimensional cavity”
of length a. After we have worked through this case, we shall see that the procedure
for generalizing to a real three-dimensional cavity is obvious.

The electric field for one-dimensional electromagnetic standing waves can be de-
scribed mathematically by the function

E(x,t) = E, sin (2nx/4) sin (2zvr) (1-6)

where 4 is the wavelength of the wave, v is its frequency, and E, is its maximum
amplitude. The first two quantities are related by the equation

v =cfh (1-7)

where ¢ is the propagation velocity of electromagnetic waves. Equation (1-6) repre-
sents a wave whose amplitude has the sinusoidal space variation sin (2nx/4) and
which is oscillating in time sinusoidally with frequency v like a simple harmonic
oscillator. Since the amplitude is obviously zero, at all times ¢, for positions satisfying
the relation

2x/A =012, 3w, (1-8)

the wave has fixed nodes; that is, it is a standing wave. In order to satisfy the re-
quirement that the waves have nodes at both ends of the one-dimensional cavity, we
choose the origin of the x axis to be at one end of the cavity (x = 0) and then require
that at the other end (x =a)

2x/A=n forx=a (1-9)
where
n=1,234:..

This condition determines a set of allowed values of the wavelength Z. For these
allowed values, the amplitude patterns of the standing waves have the appearance
shown in Figure 1-4. These patterns may be recognized as the standing wave patterns
for vibrations of a string fixed at both ends, a real physical system which also satisfies
(1-6). In our case the patterns represent electromagnetic standing waves.

It is convenient to continue the discussion in terms of the allowed frequencies
instead of the allowed wavelengths. These frequencies are v = ¢/4, where 2a/i = n.
That is

v = cn/2a n=1234... (1-10)

We can represent these allowed values of frequency in terms of a diagram consisting
of an axis on which we plot a point at every integral value of n. On such a diagram,
the value of the allowed frequency v corresponding to a particular value of n is, by
(1-10), equal to ¢/2a times the distance d from the origin to the appropriate point, or
the distance d is 2a/c times the frequency v. These relations are shown in Figure 1-5.
Such a diagram is useful in calculating the number of allowed values in frequency

Figure 1-4 The amplitude patterns of standing waves in a one-dimensional cavity with
walls at x = 0 and x = a, for the first three values of the index n.



———d=(2a/c) (v+dv) ———]
L—— d=(2a/c) v -1 i

01234~ -+ n—

Figure 1-5 The allowed values of the index n, which determines the allowed values of the
frequency, in a one-dimensional cavity of length a.

range v to v + dv, which we call N(v)dv. To evaluate this quantity we simply count
the number of points on the n axis which fall between two limits which are con-
structed so as to correspond to the frequencies v and v + dv, respectively. Since the
points are distributed uniformly along the n axis, it is apparent that the number of
points falling between the two limits will be proportional to dv but will not depend
on v. In fact, it is easy to see that N(v)dv = (2a/c)dv. However, we must multiply
this by an additional factor of 2 since, for each of the allowed frequencies, there are
actually two independent waves corresponding to the two possible states of polariza-
tion of electromagnetic waves. Thus we have

N(v}dv:i—f‘dv (1-11)

This completes the calculation of the number of allowed standing waves for the arti-
ficial case of a one-dimensional cavity.

The above calculation makes apparent the procedures for extending the calcula-
tion to the real case of a three-dimensional cavity. This extension is indicated in
Figure 1-6. Here the set of points uniformly distributed at integral values along a
single n axis is replaced by a uniform three-dimensional array of points whose three
coordinates occur at integral values along each of three mutually perpendicular n
axes. Each point of the array corresponds to a particular allowed three-dimensional

r=(2afc) v

dr=(2a/c) dv

Figure 1-6 The allowed frequencies in a three-dimensional cavity in the form of a cube
of edge length a are determined by three indices n,, n,, n_, which can each assume only
integral values. For clarity, only a few of the very many points corresponding to sets of
these indices are shown.
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standing wave. The integral values of n,, n,, and n. specified by each point give the
number of nodes of the x, y, and z components, respectively, of the three-dimensional
wave. The procedure is equivalent to analyzing a three-dimensional wave (i.e., one
propagated in an arbitrary direction) into three one-dimensional component waves.
Here the number of allowed frequencies in the frequency interval v to v + dv is equal
to the number of points contained between shells of radii corresponding to fre-
quencies v and v + dv, respectively. This will be proportional to the volume contained
between these two shells, since the points are uniformly distributed. Thus it is ap-
parent that N(v)dv will be proportional to v2 dv, the first factor, v2, being proportional
to the arca of the shells and the second factor, dv, being the distance between them.
In the following example we shall work out the details and find

8wV
c.3

N(v)dv = vZdv (1-12)

where V = a°, the volume of the cavity.

Example 1-3. Derive (1-12), which gives the number of allowed electromagnetic standing
waves in cach frequency interval for the case of a three-dimensional cavity in the form of a
metallic-walled cube of edge length a.

B Consider radiation of wavelength 4 and frequency v = ¢/A, propagating in the direction de-
fined by the three angles «, fi, y, as shown in Figure 1-7. The radiation must be a standing
wave since all three of its components are standing waves. We have indicated the locations
of some of the fixed nodes of this standing wave by a set of planes perpendicular to the propa-
gation direction 2. ff, y. The distance between these nodal planes of the radiation is just 4/2,
where / is its wavelength. We have also indicated the locations at the three axes of the nodes
of the three components. The distances between these nodes are

Jy/2 = if2cos a
4y/2 = if2cos B (1-13)
A2 = Af2cos 7
Let us write expressions for the magnitudes at the three axes of the electric fields of the three
components, They are

E(x,t) = Eq_ sin (2rx/4,) sin (2nvt)
E(yt) = Eo, sin (2my/4y) sin (2mve)
E(zt) = Ey_sin (2nz/4.) sin (2nvt)

Fa
—

h

a ..I & -, x
L—Axfzaj- “Nxf2 1

Figure 1-7 The nodal planes of a standing wave propagating in a certain direction in a
cubical cavity.




The expression for the x component represents a wave with a maximum amplitude E,_, with
a space variation sin (2mx/A,), and which is oscillating with frequency v. As sin (2nx/4,) is zero
for 2x/A, =0, 1,2, 3,..., the wave is a standing wave of wavelength 1, because it has fixed
nodes separated by the distance Ax = /./2. The expressions for the y and z components repre-
sent standing waves of maximum amplitudes E, and E,_and wavelengths 4, and 4_, but all
three component standing waves oscillate with the frequency v of the radiation. Note that
these expressions automatically satisfy the requirement that the x component have a node at
x = 0, the y component have a node at y = 0, and the z component have a node at z = 0. To
make them also satisly the requirement that the x component have a node at x = g, the y com-
ponent have a node at y = g, and the z component have a node at z = q, set

2x/A, =n, for x =a

2y/d,= n, fory=a

2z{A, = n, forz=a

wheren, =1,2,3,...; n,=123...;n=123,....Using(l-13), these conditions become
(2a/4) cos o = n,, (2af2) cos f = n, (2a/d) cos y = n,

Squaring both sides of these equations and adding, we obtain
(2a/3)*(cos? o + cos? ff + cos® y) = n? + nyz + n?
but the angles o, fi, y have the property
cos?a + cos? f+cos?y =1
Thus

i R e 1
2afh = \/nZ + n‘% +n?

where n,, n,, n, take on all possible integral values. This equation describes the limitation on
the possible wavelengths of the clectromagnetic radiation contained in the cavity.

We again continue the discussion in terms of the allowed frequencies instead of the allowed
wavelengths. They are

v=§=i\fﬁ§ Tl 4nl (1-14a)
Now we shall count the number of allowed frequencies in a given frequency interval by
constructing a uniform cubic lattice in one octant of a rectangular coordinate system in such
a way that the three coordinates ol each point of the lattice are equal to a possible set of the
three integers n,, n,, n_ (see Figure 1-6). By construction, each lattice point corresponds to an
allowed frequency. Furthermore, N(v)dv, the number of allowed frequencies between v and
v + dv, is equal to N(r)dr, the number of points contained between concentric shells of radii r
and r + dr, where

=2 Z 2
r=Nny+n t+n;

From (1-14a), this is
2a
r=—y (1-14b)
¢
Since N(r)dr is equal to the volume enclosed by the shells times the density of lattice points,
and since, by construction, the density is one, N(r)dr is simply

I *d
N@ydr = < dmrar =25 (1-15)

Setting this equal to N(v)dv, and evaluating r* dr from (1-14b), we have

3
N(v)dv =5(§) v2 dv
2\ ¢

This completes the calculation except that we must multiply these results by a factor of 2
because, for each of the allowed frequencies we have enumerated, there are actually two inde-
pendent waves corresponding to the two possible states of polarization of electromagnetic ra-
diation. Thus we have derived (1-12). Tt can be shown that N(v) is independent of the assumed
shape of the cavity and depends only on its volume. <

FL
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Note that there is a very significant difference between the results obtained for the
case of a real three-dimensional cavity and the results we obtained earlier for the
artificial case of a one-dimensional cavity. The factor of v? found in (1-12), but not in
(1-11), will be seen to play a fundamental role in the arguments that follow. This factor
arises, basically, because we live in a three-dimensional world—the power of v being
one less than the dimensionality. Although Planck, in ultimately resolving the serious
discrepancies between classical theory and experiment, had to question certain points
which had been considered to be obviously true, neither he nor others working on the
problem questioned (1-12). It was, and remains, generally agreed that (1-12) is valid.

We now have a count of the number of standing waves. The next step in the Ray-
leigh-Jeans classical theory of blackbody radiation is the evaluation of the average
total energy contained in each standing wave of frequency v. According to classical
physics, the energy of some particular wave can have any value from zero to infinity,
the actual value being proportional to the square of the magnitude of its amplitude
constant E,. However, for a system containing a large number of physical entities of
the same kind which are in thermal equilibrium with each other at temperature T,
classical physics makes a very definite prediction about the average values of the
energies of the entities. This applies to our case since the multitude of standing waves,
which constitute the thermal radiation inside the cavity, are entities of the same kind
which are in thermal equilibrium with each other at the temperature T of the walls
of the cavity. Thermal equilibrium is ensured by the fact that the walls of any real
cavity will always absorb and reradiate, in different frequencies and directions, a small
amount of the radiation incident upon them and, therefore, the different standing
waves can gradually exchange energy as required to maintain equilibrium.

The prediction comes from classical kinetic theory, and it is called the law of equi-
partition of energy. This law states that for a system of gas molecules in thermal
equilibrium at temperature T, the average kinetic energy of a molecule per degree of
freedom is kT /2, where k = 1.38 x 10723 joule/°K is called Boltzmann’'s constant. The
law actually applies to any classical system containing, in equilibrium, a large number
of entities of the same kind. For the case at hand the entities are standing waves
which have one degree of freedom, their electric field amplitudes. Therefore, on the
average their kinetic energies all have the same value, kT /2. However, each sinusoi-
dally oscillating standing wave has a total energy which is twice its average kinetic
energy. This is a common property of physical systems which have a single degree
of freedom that execute simple harmonic oscillations in time; familiar cases are a
pendulum or a coil spring. Thus each standing wave in the cavity has, according to
the classical equipartition law, an average total energy

& =kT (1-16)
The most important point to note is that the average total energy & is predicted
to have the same value for all standing waves in the cavity, independent of their
frequencies.

The energy per unit volume in the frequency interval v to v + dv of the blackbody
spectrum of a cavity at temperature T is just the product of the average energy per
standing wave times the number of standing waves in the frequency interval, divided
by the volume of the cavity. From (1-15) and (1-16) we therefore finally obtain‘the
result

l2‘ g
pr(v)dv = 8“‘;3” dv (1-17)
This the Rayleigh-Jeans formula for blackbody radiation.

In Figure 1-8 we compare the predictions of this equation with experimental data.
The discrepancy is apparent. In the limit of low frequencies, the classical spectrum
approaches the experimental results, but, as the frequency becomes large, the theo-
retical prediction goes to infinity! Experiment shows that the energy density always
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Figure 1-8 The Rayleigh-Jeans prediction (dashed line) compared with the experimental

results (solid line) for the energy density of a blackbody cavity, showing the serious dis-
crepancy called the ultraviolet catastrophe.

remains finite, as it obviously must, and, in fact, that the energy density goes to zero
at very high frequencies. The grossly unrealistic behavior of the prediction of classical
theory at high frequencies is known in physics as the “ultraviolet catastrophe.” This
term is suggestive of the importance of the failure of the theory.

1-4 PLANCK’S THEORY OF CAVITY RADIATION

In trying to resolve the discrepancy between theory and experiment, Planck was led
to consider the possibility of a violation of the law of equipartition of energy on which
the theory was based. From Figure 1-8 it is clear that the law gives satisfactory results
for small frequencies. Thus we can assume

&= kT (1-18)

that is, the average total energy approaches kT as the frequency approaches zero. The
discrepancy at high frequencies could be eliminated if there is, for some reason, a
cutoff, so that

80 (1-19)

Lamd=+}

that is, if the average total energy approaches zero as the frequency approaches in-
finity. In other words, Planck realized that, in the circumstances that prevail for the
case of blackbody radiation, the average energy of the standing waves is a function of
frequency &(v) having the properties indicated by (1-18) and (1-19). This is in contrast
to the law of equipartition of energy which assigns to the average energy & a value
independent of frequency.

Let us look at the origin of the equipartition law. It arises, basically, from a more
comprehensive result of classical statistical mechanics called the Boltzmann distribu-
tion. (Arguments leading to the Boltzmann distribution are given in Appendix C for
students not already familiar with it.) Here we shall use a special form of the Boltzmann
distribution

kT
kT
in which P(&)dé is the probability of finding a given entity of a system with energy
in the interval between & and & + d&, when the number of energy states for the
entity in that interval is independent of &. The system is supposed to contain a large

4

P(6) = (1-20)
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number of entities of the same kind in thermal equilibrium at temperature T, and k
represents Boltzmann’s constant. The energies of the entities in the system we are
considering, a set of simple harmonic oscillating standing waves in thermal equilib-
rium in a blackbody cavity, are governed by (1-20).

The Boltzmann distribution function is intimately related to Maxwell’s distribution func-
tion for the energy of a molecule in a system of molecules in thermal equilibrium. In fact,
the exponential in the Boltzmann distribution is responsible for the exponential factor in the
Maxwell distribution. The factor of #'/? that some students may know is also present in the
Maxwell distribution results from the circumstance that the number of energy states for a
molecule in the interval & to & + d& is not independent of & but instead increases in proportion
to &'12.

The Boltzmann distribution function provides complete information about the
energies of the entities in our system, including, of course, the average value & of the
energies. The latter quantity can be obtained from P(&) by using (1-20) to evaluate
the integrals in the ratio

(1-21)
P(&)dé

The integrand in the numerator is the energy, &, weighted by the probability that the
entity will be found with this energy. By integrating over all possible energies, the
average value of the energy is obtained. The denominator is the probability of finding
the entity with any energy and so should have the value one; it does. The integral in
the numerator can be evaluated, and the result is just the law of equipartition of
energy

& =kT (1-22)

Instead of actually carrying through the evaluation here, it will be better, for the
purpose of arguments to follow, to look at the graphical presentation of P(&) and &
shown in the top half of Figure 1-9. There P(&) is plotted as a function of &. Its
maximum value, 1/kT, occurs at & = 0, and the value of P(&) decreases smoothly
with increasing & to approach zero as & — o0, That is, the result that would most
probably be found in a measurement of & is zero. But the average & of the results
that would be found in a number of measurements of & is greater than zero, as is
shown on the abscissa of the top figure, since many measurements of & will lead to
values greater than zero. The bottom half of Figure 1-9 indicates the evaluation of &
from P(&).

Planck’s great contribution came when he realized that he could obtain the re-
quired cutoff, indicated in (1-19), if he modified the calculation leading from P(&) to
& by treating the energy & as if it were a discrete variable instead of as the continuous
variable that it definitely is from the point of view of classical physics. Quantitatively,
this can be done by rewriting (1-21) in terms of a sum instead of an integral. We
shall soon see that this is not too hard to do, but it will be much more instructive
for us to study the graphical presentation in Figure 1-10 first.

Planck assumed that the energy & could take on only certain discrete values, rather
than any value, and that the discrete values of the energy were uniformly distributed;
that is, he took

& =0,A8,2A6,3A6,4A6, . .. (1-23)

as the set of allowed values of the energy. Here A& is the uniform interval between
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Figure 1-9 Top: A plot of the Boltzmann probability distribution P(&) = e~ “*"/kT. The aver-
age value of the energy & for this distribution is & = kT, which is the classical law of
equipartition of energy. To calculate this value of &, we integrate §P(£) from zero to
infinity. This is just the quantity that is being averaged, &, multiplied by the relative prob-
ability P(&) that the value of & will be found in a measurement of the energy. Botlom: A
plot of £P(&). The area under this curve gives the value of &.

successive allowed values of the energy. The top part of Figure 1-10 illustrates an
evaluation of & from P(&), for a case in which A& « kT. In this case the result
obtained is & ~ kT. That is, a value essentially equal to the classical result is obtained
here since the discreteness A& is very small compared to the energy range kT in
which P(&) changes by a significant amount; it makes no essential difference in this
case whether & is continuous or discrete. The middle part of Figure 1-10 illustrates
the case in which A& ~ kT. Here we find & < kT, because most of the entities have
energy & = 0 since P(&) has a rather small value at the first allowed nonzero value
A& so & = 0 dominates the calculation of the average value of & and a smaller result
is obtained. The effect of the discreteness 1s seen most clearly, however, in the lower
part of Figure 1-10, which illustrates a case in which A& > kT. In this case the prob-
ability of finding an entity with any of the allowed energy values greater than zero is
negligible, since P(&) is extremely small for all these values, and the result obtained
is & < kT.

Recapitulating, Planck discovered that he could obtain & ~ kT when the difference
in adjacent energies A& is small, and & ~ 0 when A& is large. Since he needed to
obtain the first result for small values of the frequency v, and the second result for
large values of v, he clearly needed to make A& an increasing function of v. Numerical
work showed him that he could take the simplest possible relation between A& and
v having this property. That is, he assumed these quantities to be proportional

A& ocv (1-24)
Written as an equation instead of a proportionality, this is
A& = hv (1-25)

where h is the proportionality constant.
Further numerical work allowed Planck to determine the value of the constant h
by finding the value which produced the best fit of his theory with the experimental
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Figure 1-10 Top: If the energy & is not a continuous variable but is instead restricted to
discrete values 0, A&, 2A&, 3A€, . . ., asindicated by the ticks on the.& axis of the figure, the
integral used to calculate the average value & must be replaced by a summation. The
average value is thus a sum of areas of rectangles, each of width A&, and with heights
given by the allowed values of & times P(&) at the beginning of each interval. In this
figure A¢ « kT, and the allowed energies being closely spaced the area of all the rectangles
differs but little from the area under the smooth curve. Thus the average value & is nearly
equal to kT, the value found in Figure 1-9. Middle: A& ~ kT, and & has a smaller value than
it has in the case of the top figure. Bottom: A& > kT, and & is further reduced. In all three
figures the rectangles show the contribution to the total area of £P(&) for each allowed
energy. The rectangle for & = 0 of course is always of zero height. This will make a large
effect on the total area if the widths of the rectangles are large.

data. The value he obtained was very close to the currently accepted value
h = 6.63 x 107 3* joule-sec

This very famous constant is now called Planck’s constant.
The formula Planck obtained for & by evaluating the summation analogous to
the integral in (1-21), and that we shall obtain in Example 1-4, is

_ hv

Since ¢"*T — 1 + hv/kT for hv/kT — 0, we see that &(v) — kT in this limit as predicted
by (1-18). In the limit hv/kT — o0, e"*T - o0, and &(v) - 0, in agreement with the
prediction of (1-19).

The formula which he then immediately obtained for the energy density in the
blackbody spectrum, using his result for &(v) rather than the classical value & = kT,



18 8nv:  hy
.OT{V) dv = c—3 W]’: dv (1—2?]

This is Planck’s blackbody spectrum. Figure 1-11 shows a comparison of this result
of Planck’s theory (expressed in terms of wavelength) with experimental results for a
temperature T = 1595°K. The experimental results are in complete agreement with
Planck’s formula at all temperatures.

We should remember that Planck did not alter the Boltzmann distribution. “All”
he did was to treat the energy of the electromagnetic standing waves, oscillating
sinusoidally in time, as a discrete instead of a continuous quantity.

Example 1-4. Derive Planck’s expression for the average energy & and also his blackbody
spectrum.
P The quantity & is evaluated from the ratio of sums

analogous to the ratio of integrals in (1-21). Sums must be used because with Planck’s postulate
the energy & becomes a discrete variable that takes on only the values & = 0, hv, 2hv, 3hv, .. ..
That is, & = nhy where n =0, 1, 2, 3,.... Evaluating the Boltzmann distribution P(&) =
e S TIKT, we have

o ) ol
Z n;l e—nh\',"kT i _— - ha
r n=0 kT n=0 v
€ =— = kT — - whercazk—
Z L o~ mhvikT Z e M T
n=0 kT =0
This, in turn, can be evaluated most easily by noting that
o o0 o
& —a— Y ™™ =¥ qg—e ™ Y nae "™
d | ! s do’.’n_o n=0 d n=0 -
- a n 20 € o o - o = o
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Figure 1-11 Planck’s energy density prediction (solid line) compared to the experimental
results (circles) for the energy density of a blackbody. The data were reported by Coblentz
in 1916 and apply to a temperature of 1595°K. The author remarked in his paper that after
drawing the spectral energy curves resulting from his measurements, "owing to eye fatigue
it was impossible for months thereafter to give attention to the reduction of the data.” The
data, when finally reduced, led to a value for Planck’s constant of 6.57 x 10 ** joule-sec.
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We have derived (1-26) for the average energy of an electromagnetic standing wave of fre-
quency v. Multiplying this by (1-12), the number N(v) dv of waves having this frequency derived

in Example 1-3, we immediately obtain the Planck blackbody spectrum, (1-27).

«

Example 1-5. It is convenient in analyzing experimental results, as in Figure 1-11, to
express the Planck blackbody spectrum in terms of wavelength A rather than frequency v. Ob-
tain p(4), the wavelength form of Planck’s spectrum, from p(v), the frequency form of the
spectrum. The quantity po(4) is defined from the equality p(2)dA = — py(v) dv. The minus sign
indicates that, though py(Z) and py(v) are both positive, d4 and dv have opposite signs. (An

increase in frequency gives rise to a corresponding decrease in wavelength.)

P From the relation v = ¢/4 we have dv = —(¢/4%)dA, or dvjdi = —(c/}?), so that

5 dv c
pr(l)= —pg(v) a2 = IJ'J'{V)T
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Figure 1-12 Planck’s energy density of blackbody radiation at various temperatures as a
function of wavelength. Note that the wavelength at which the curve is a maximum de-

creases as the temperature increases.



If now we set v = ¢/4 in (1-27) for py(v) we obtain

8mhe d
JOT(’J') di = ?' W (1—28]

In Figure 1-12 we show p(1) versus 4 for several different temperatures. The trend from “red
heat” to “white heat” to “blue heat” radiation with rising temperatures becomes clear as the
distribution of radiant energy with wavelength is studied for increasing temperatures. . <

Stefan’s law, (1-2), and Wien’s displacement law, (1-3), can be derived from the
Planck formula. By fitting them to the experimental results we can determine values
of the constants h and k. Stefan’s law is obtained by integrating Planck’s law over
the entire spectrum of wavelengths. The radiancy is found to be proportional to the
fourth power of the temperature, the proportionality constant 27°k*/15¢%h* being
identified with @, Stefan’s constant, which has the experimentally determined value
5.67 x 1078 W/m2-°K*, Wien’s displacement law is obtained by setting dp(4)/d/ = 0.
We find ., T = 0.2014hc/k and identify the right-hand side of the equation with
Wien’s experimentally determined constant 2.898 x 1073 m-°K. Using these two
measured values and assuming a value for the speed of light ¢, we can calculate the
values of h and k. Indeed, this was done by Planck, his values agreeing very well with
those obtained subsequently by other methods.

1-5 THE USE OF PLANCK’S RADIATION LAW IN THERMOMETRY

The radiation emitted from a hot body can be used to measure its temperature. If total
radiation is used, then, from the Stefan-Boltzmann law, we know that the energies emitted by
two sources are in the ratio of the fourth power of the temperature. However, it is difficult to
measure total radiation from most sources so that we measure instead the radiancy over a
finite wavelength band. Here we use the Planck radiation law which gives the radiancy as a
function of temperature and wavelength. For monochromatic radiation of wavelength 4 the
ratio of the spectral intensities emitted by sources at T, °K and T, °K is given from Planck’s
law as
ghc;’ikT| iz

ehc,ﬂ'sz =

If T, is taken as a standard reference temperature, then T, can be determined relative to the
standard from this expression by measuring the ratio experimentally. This procedure is used
in the International Practical Temperature Scale, where the normal melting point of gold is
taken as the standard fixed point, 1068°C. That is, the primary standard optical pyrometer is
arranged to compare the spectral radiancy from a blackbody at an unknown temperature
T = 1068°C with a blackbody at the gold point. Procedures must be adopted, and the theory
developed, to allow for the practical circumstances that most sources are not blackbodies and
that a finite spectral band is used instead of monochromatic radiation.

Most optical pyrometers use the eye as a detector and call for a large spectral bandwidth so
that there will be enough energy for the eye to see. The simplest and most accurate type of
instrument used above the gold point is the disappearing filament optical pyrometer (see Fig-
ure 1-13). The source whose temperature is to be measured is imaged on the filament of the

Objective Pyrometer Microscope
lens lamp —_——

Source of B T
radiation |

Figure 1-13 Schematic diagram of an optical pyrometer.
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pyrometer lamp, and the current in the lamp is varied until the filament seems to disappear
into the background of the source image. Careful calibration and precision potentiometers
insure accurate measurement of temperature.

A particularly interesting example in the general category of thermometry using blackbody
radiation was discovered by Dicke, Penzias, and Wilson in the 1950s. Using a radio telescope
operating in the several millimeter to several centimeter wavelength range, they found that a
blackbody spectrum of electromagnetic radiation, with a characteristic temperature of about
3°K, is impinging on the earth with equal intensity from all directions. The uniformity in
direction indicates that the radiation fills the universe uniformly. Astrophysicists consider these
measurements as strong evidence in favor of the so-called big-bang theory, in which the universe
was in the form of a very dense, and hot, fircball of particles and radiation around 1010 years
ago. Due to subsequent expansion and the resulting Doppler shift, the temperature of the
radiation would be expected to drop by now to something like the observed value of 3°K.

1-6 PLANCK’S POSTULATE AND ITS IMPLICATIONS

Planck’s contribution can be stated as a postulate, as follows:

Any physical entity with one degree of freedom whose “coordinate™ is a sinusoidal
function of time (i.e.. executes simple harmonic oscillations) can possess only total
energies & which satisfy the relation

& = nhv 0,1 203w

where v is the frequency of the oscillation, and h is a universal constant.

The word coordinate is used in its general sense to mean any quantity which
describes the instantaneous condition of the enity. Examples are the length of a coil
spring, the angular position of a pendulum bob, and the amplitude of a wave. All
these examples happen also to be sinusoidal functions of time.

An energy-level diagram, as shown in Figure 1-14, provides a convenient way of
illustrating the behavior of an entity governed by this postulate, and it is also useful
in contrasting this behavior with what would be expected on the basis of classical
physics. In such a diagram we indicate each of the possible energy states of the entity
with a horizontal line. The distance from the line to the zero energy line is propor-
tional to the total energy to which it corresponds. Since the entity may have any
energy from zero to infinity according to classical physics, the classical energy-level
diagram consists of a continuum of lines extending from zero up. However, the entity
executing simple harmonic oscillations can have only one of the discrete total energies
& =0, hv, 2hv, 3hv . .. if it obeys Planck’s postulate. This is indicated by the discrete
set of lines in its energy-level diagram. The energy of the entity obeying Planck’s
postulate is said to be quantized, the allowed energy states are called quantum states,
and the integer n is called the quantum number.

It may have occurred to the student that there are physical systems whose behavior
seems to be obviously in disagreement with Planck’s postulate. For instance, an ordi-

&= 5hy

& = 4hy

& =3

& =2hy

_ =

Classical é=0 Planck =1

Figure 1-14 Left: The allowed energies in a classical system, oscillating sinusoidally with
frequency v, are continuously distributed. Right: The allowed energies according to
Planck's postulate are discretely distributed since they can only assume the values nhv.
We say that the energy is quantized, n being the quantum number of an allowed quantum
state.




nary pendulum executes simple harmonic oscillations, and yet this system certainly
appears to be capable of possessing a continuous range of energies. Before we accept
this argument, however, we should make some simple numerical calculations con-
cerning such a system.

Example 1-6. A pendulum consisting of a 0.01 kg mass is suspended from a string 0.1 m
in length. Let the amplitude of its oscillation be such that the string in its extreme posifions
makes an angle of 0.1 rad with the vertical. The energy of the pendulum decreases due, for
instance, to frictional effects. Is the energy decrease observed to be continuous or dis-
continuous?

B The oscillation frequency of the pendulum is

2
pk /‘* ok, PRONCT 4
2mN I 2=m 0.1m

The energy of the pendulum is its maximum potential cnergy
mgh = mgl(1 — cos 0) = 0.01 kg x 9.8 m/sec® x 0.1 m x (1 — cos 0.1)
=5x 10" 7 joule

The energy of the pendulum is quantized so that changes in energy take place in discontinuous
jumps of magnitude AE = hv, but

AE = hv = 6.63 x 107 ** joule-sec x 1.6/sec = 10733 joule

whereas E = 5 x 10™ ° joule. Therefore, AE/E = 2 x 10~ 2%, Hence, to measure the discrete-
ness in the energy decrease we need to measure the energy to better than two parts in 102°. It is
apparent that even the most sensitive experimental equipment is totally incapable of this energy
resolution. <

We conclude that experiments involving an ordinary pendulum cannot determine
whether Planck’s postulate is valid or not. The same is true of experiments on all
other macroscopic mechanical systems. The smallness of h makes the graininess in the
energy too fine to be distinguished from an energy continuum. Indeed, h might as well
be zero for classical systems and, in fact, one way to reduce quantum formulas to
their classical limits would be to let A — 0 in these formulas. Only where we con-
sider systems in which v is so large and/or & is so small that A& = hv is of the order
of & are we in a position to test Planck’s postulate. One example is, of course, the
high-frequency standing waves in blackbody radiation. Many other examples will be
considered in following chapters.

1-7 A BIT OF QUANTUM HISTORY

In its original form, Planck’s postulate was not so far reaching as it is in the form we have
given. Planck’s initial work was done by treating, in detail, the behavior of the electrons in the
walls of the blackbody and their coupling to the electromagnetic radiation within the cavity.
This coupling leads to the same factor v? we obtained in (1-12) from the more general arguments
due to Rayleigh and Jeans. Through this coupling, Planck related the energy in a particular
frequency component of the blackbody radiation to the energy of an electron in the wall oscil-
lating sinusoidally at the same frequency, and he postulated only that the energy of the
oscillating particle is quantized. Tt was not until later that Planck accepted the idea that the
oscillating electromagnetic waves were themselves quantized, and the postulate was broadened
to include any entity whose single coordinate oscillates sinusoidally.

At first Planck was unsure whether his introduction of the constant h was only a mathemat-
ical device or a matter of deep physical significance. In a letter to R. W. Wood, Planck called
his limited postulate “an act of desperation.” “I knew,” he wrote, “that the problem (of the
equilibrium of matter and radiation) is of fundamental significance for physics; I knew the
formula that reproduces the energy distribution in the normal spectrum; a theoretical interpre-
tation had to be found at any cost, no matter how high.” For more than a decade Planck
tried to fit the quantum idea into classical theory. With each attempt he appeared to retreat
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from his original boldness, but always he generated new ideas and techniques that quantum
theory later adopted. What appears to have finally convinced him of the correctness and deep
significance of his quantum hypothesis was its support of the definiteness of the statistical
concept of entropy and the third law of thermodynamics.

It was during this period of doubt that Planck was editor of the German research journal
Annalen der Physik. In 1905 he received Einstein’s first relativity paper and stoutly defended
Einstein’s work. Thereafter he became one of young Einstein’s patrons in scientific circles, but
he resisted for some time the very ideas on the quantum theory of radiation advanced by
Einstein that subsequently confirmed and extended Planck’s own work. Einstein, whose deep
insight into electromagnetism and statistical mechanics was perhaps unequalled by anyone at
the time, saw as a result of Planck’s work the need for a sweeping change in classical statistics
and electromagnetism. He advanced predictions and interpretations of many physical phe-
nomena which were later strikingly confirmed by experiment. In the next chapter we turn to
one of these phenomena and follow another road on the way to quantum mechanics.

QUESTIONS

1. Does a blackbody always appear black? Explain the term blackbody.

2. Pockets formed by coals in a coal fire seem brighter than the coals themselves. Is the tem-
perature in such pockets appreciably higher than the surface temperature of an exposed
glowing coal?

3. 1If we look into a cavity whose walls are kept at a constant temperature no details of the
interior are visible. Explain.

4. The relation Ry = ¢T* is exact for blackbodies and holds for all temperatures. Why is
this relation not used as the basis of a definition of temperature at, for instance, 100°C?

5. A piece of metal glows with a bright red color at 1100°K. At this temperature, however,
a piece of quartz does not glow at all. Explain. (Hint: Quartz is transparent to visible
light.)

6. Make a list of distribution functions commonly used in the social sciences (e.g., distribu-
tion of families with respect to income). In each case, state whether the variable whose
distribution is described is discrete or continuous,

7. In(1-4) relating spectral radiancy and energy density, what dimensions would a propor-
tionality constant need to have?

8. What is the origin of the ultraviolet catastrophe?

9. The law of equipartition of energy requires that the specific heat of gases be independent
of the temperature, in disagreement with experiment. Here we have seen that it leads to

the Rayleigh-Jeans radiation law, also in disagreement with experiment. How can you
relate these two failures of the equipartition law?

10. Compare the definitions and dimensions of spectral radiancy R,{v), radiancy R, and
energy density p(v).

11.  Why is optical pyrometry commonly used above the gold point and not below it? What
objects typically have their temperatures measured in this way?

12. Are there quantized quantities in classical physics? Is energy quantized in classical
physics?

13. Does it make sense to speak of charge quantization in physics? How is this different from
energy quantization?

14. Elementary particles seem to have a discrete set of rest masses. Can this be regarded as
quantization of mass?

15. In many classical systems the allowed frequencies are quantized. Name some of the sys-
tems. Is energy quantized there too?

16.  Show that Planck’s constant has the dimensions of angular momentum. Does this neces-
sarily suggest that angular momentum is a quantized quantity?

17. For quantum effects to be everyday phenomena in our lives, what would be the minimum
order of magnitude of h?



18.

19.
20.

What, if anything, does the 3°K universal blackbody radiation tell us about the tempera-
ture of outer space?

Does Planck’s theory suggest quantized atomic energy states?

Discuss the remarkable fact that discreteness in energy was first found in analyzing a con-
tinuous spectrum emitted by interacting atoms in a solid, rather than in analyzing a dis-
crete spectrum such as is emitted by an isolated atom in a gas.

PROBLEMS

10.

11.

12.

13.

14.

At what wavelength does a cavity at 6000°K radiate most per unit wavelength?

Show that the proportionality constant in (1-4) is 4/c. That is, show that the relation
between spectral radiancy Ry(v) and energy density p4{(v) is Rp(v)dv = (¢/4)p(v) dv.
Consider two cavities of arbitrary shape and material, each at the same temperature T,
connected by a narrow tube in which can be placed color filters (assumed ideal) which
will allow only radiation of a specified frequency v to pass through. (a) Suppose at a cer-
tain frequency v, pr(v)dv for cavity 1 was greater than pp(v)dv for cavity 2. A color
filter which passes only the frequency v' is placed in the connecting tube. Discuss what
will happen in terms of energy flow. (b) What will happen to their respective temperatures?
(c) Show that this would violate the second law of thermodynamics; hence prove that all
blackbodies at the same temperature must emit thermal radiation with the same spectrum
independent of the details of their composition.

A cavity radiator at 6000°K. has a hole 10.0 mm in diameter drilled in its wall. Find the
power radiated through the hole in the range 55005510 A. (Hint: See Problem?2)

(a) Assuming the surface temperature of the sun to be 5700°K, use Stefan’s law, (1-2),
to determine the rest mass lost per second to radiation by the sun. Take the sun’s diameter
to be 1.4 x 10° m. (b) What fraction of the sun’s rest mass is lost each year from elec-
tromagnetic radiation? Take the sun’s rest mass to be 2.0 x 103° kg.

In a thermonuclear explosion the temperature in the fireball is momentarily 107 °K. Find
the wavelength at which the radiation emitted is a maximum.

At a given temperature, 4., = 6500 A for a blackbody cavity. What will A ax e if the

temperature of the cavity walls is increased so that the rate of emission of spectral radia-
tion is doubled?

At what wavelength does the human body emit its maximum temperature radiation? List
assumptions you make in arriving at an answer.

Assuming that /. is in the near infrared for red heat and in the near ultraviolet for
blue heat, approximately what temperature in Wien’s displacement law corresponds to
red heat? To blue heat?

The average rate of solar radiation incident per unit area on the earth is 0.485 cal/cm?-
min (or 338 W/m?). (a) Explain the consistency of this number with the solar constant
(the solar energy falling per unit time at normal incidence on a unit area) whose value is
1.94 cal/em?-min (or 1353 W/m?). (b) Consider the earth to be a blackbody radiating
energy into space at this same rate. What surface temperature would the earth have under
these circumstances?

Attached to the roof of a house are three solar panels, each 1 m x 2 m. Assume the equiv-
alent of 4 hrs of normally incident sunlight each day, and that all the incident light is
absorbed and converted to heat. How many gallons of water can be heated from 40°C
to 120°C each day?

Show that the Rayleigh-Jeans radiation law, (1-17), is not consistent with the Wien dis-
placement law v, oc T, (1-3a), or 4,,,,T = const, (1-3b).

We obtain v,,,, in the blackbody spectrum by setting dp(v}/dv = 0 and /. by setting

dp(2)/d4 = 0. Why is it not possible to get from A, T = const to v, = const x T

simply by using /.. = ¢/vmax? That is, why is it wrong to assume that v,.Amax = €,
where ¢ is the speed of light?

Consider the following numbers: 2, 3, 3, 4, 1, 2, 2, 1, 0 representing the number of hits
garnered by each member of the Baltimore Orioles in a recent outing. (a) Calculate

€¢
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15.

16.

17.

18.

19.

20.

directly the average number of hits per man. (b) Let x be a variable signifying the number
of hits obtained by a man, and let f(x) be the number of times the number x appears.
Show that the average number of hits per man can be written as

4
> xf(x)
x=2
2 flx)
0
(c) Let p(x) be the probability of the number x being attained. Show that X is given by
a4
Xx=Y xp(x)
0
Consider the function
1
ﬂx}=ﬁ(10—x)2 0<x<10
flx)=0 all other x
(a) From
-]
J. xf(x)dx
_ - a0
X=——
'[ fx)dx
-0

find the average value of x. (b) Suppose the variable x were discrete rather than contin-
uous. Assume Ax = 1 so that x takes on only integral values 0, 1, 2,.. ., 10. Compute ¥
and compare to the result of part (a). (Hint: It may be easier to compute the appropriate
sum directly rather than working with general summation formulas.) (c) Compute X for
Ax = 5,1.e. x =0, 5, 10. Compare to the result of part (a). (d) Draw analogies between the
results obtained in this problem and the discussion of Section 1-4. Be sure you understand
the roles played by &, A&, and P(&).

Using the relations P(€) = e~ “*T/kTand [§ P(€)dé& = 1, evaluate the integral of (1-21)
to deduce (1-22), & = kT.

Use the relation Ry{v)dv = (c/4)p(v)dv between spectral radiancy and energy density,
together with Planck’s radiation law, to derive Stefan’s law. That is, show that

where o = 2rn°k*/15¢%h3.

Derive the Wien displacement law, A, T = 02014 hc/k, by solving the equation
dp(2)/di = 0. (Hint: Set he/AkT = x and show that the equation quoted leads to e * +
x/5 = 1. Then show that x = 4.965 is the solution.)

To verify experimentally that the 3°K universal background radiation accurately fits a
blackbody spectrum, it is decided to measure R4(4) from a wavelength below /A, where
its value is 0.2R{4,,) to a wavelength above A, where its value is again 0.2R p(4,)-
Over what range of wavelength must the measurements be made?

Show that, at the wavelength /.., where p4{4) has its maximum
pT(;-m:x] = l?(}ﬂ.’(kT}s,(}lC)4



21.

22.

23.

24

Use the result of the preceding problem to find the two wavelengths at which p(4) has
a value one-half the value at /.. Give answers in terms of 4.

A tungsten sphere 2.30 cm in diameter is heated to 2000°C. At this temperature tungsten
radiates only about 309, of the energy radiated by a blackbody of the same size and tem-
perature. (a) Calculate the temperature of a perfectly black spherical body of the same
size that radiates at the same rate as the tungsten sphere. (b) Calculate the diameter of
a perfectly black spherical body at the same temperature as the tungsten sphere that
radiates at the same rate.

(a) Show that about 25% of the radiant energy in a cavity is contained within wave-
lengths zero and A,,,,; i.e., show that

Amax

pr(A) di

L
J. prlA)da
)

(Hint: he/2 kT = 4.965; hence Wien’s approximation is fairly accurate in evaluating the
integral in the numerator above.) (b) By what percent does Wien’s approximation used
over the entire wavelength range overestimate or underestimate the integrated energy
density?

Find the temperature of a cavity having a radiant energy density at 2000 A that is 3.82
times the energy density at 4000 A.
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