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1. In 100 words or less or using algebraic formulae where all of the symbols are defined, or
annotated diagrams where appropriate, explain or define each of the following terms of wave
phenomena: [21]

(a) isomorphism
Solution: The word “isomorphism” applies when two complex structures can be mapped
onto each other, in such a way that to each part of one structure there is a corresponding
part in the other structure, where “corresponding” means that the two parts play similar
roles in their respective structures. - Douglas Hofstadter, (Gdel, Escher, Bach, p. 49)
If there exists an isomorphism between two structures, we call the two structures isomor-
phic. Isomorphic structures are “the same” at a certain level of abstraction; ignoring the
specific identities of the elements in the underlying sets and the names of the underlying
relations, the two structures are identical. - http://www.wordiq.com/definition/Isomorphism/
In the case of waves, we found various systems (strings, acoustic, tidal, etc.) which had
mathematical structures which were identical, so we could apply the results from one
area directly to another by just translating symbols.

(b) p, s, ξ, and ξ̇ for acoustic waves
Solution: p(x, t) is the unction representing excess acoustic pressure, or the pressure
relative to the normal undisturbed pressure and is given by p = P − P0.
s(x, t) is the unction representing relative change in density, measured from the undis-
turbed density, referred to as the condensation variable, given by s = (ρ − ρ0)/ρ0, a
measure of how much the fluid is compressed (condensations) or uncompressed (rarefac-
tions).
ξ(x, t) is the function representing the displacement of the particles from their undis-
turbed position x - this displacement is parallel to the wave motion for acoustic waves.
ξ̇(x, t) = ∂ξ(x, t)/∂t is the function representing the velocity of the particles originally
at the undisturbed position x - this velocity is parallel to the wave motion for acoustic
waves.

http://www.wordiq.com/definition/Isomorphism/


(c) convective acoustic intensity
Solution: An intensity is a measure of power (work/energy per unit time) per unit
area. The convective acoustic intensity I ′ = P0ξ̇ is the rate at which work is done per
unit area on a fluid by moving the fluid in bulk in one direction or another, without
any disturbance from the normal undisturbed pressure. I ′ can take positive or negative
values depending only on the value of ξ̇. For non-dissipative media, for periodic waves
(or any situation where ξ returns to the same value), net energy delivered to the system
(which is the time integral of I ′) is zero, and thus the average value of I ′ is also zero.
This is to be contrasted with the radiative acoustic intensity i = pξ̇ which can have net
energies delivered to the system and average values that are non-zero even for periodic
waves.

(d) “3 db down”
Solution: A decrease of 3 decibels corresponds with a halving of the intensity. Since the
decibel scale is logarithmic (multiplied by ten), decreases (or increases) by factors of two
in intensity correspond with decreases (or increases) of log10 2 (multiplied by ten). Since
log10 2 = 0.3010, a decrease of 3 db means that the measured intensity is one half of the
original (actually it is just a bit less than one half). This analysis applies to any situation
where the decibel scale is used - which is most commonly used for sound intensities.

(e) Poynting vector
Solution: The Poynting vector S is the energy flux or intensity of an electromagnetic
wave, or energy per unit time per unit area, and is calculated by the cross product
S = E×H, where E is the electric field vector and H is the magnetic field vector. S has
a magnitude equal to the power per unit area crossing a surface whose normal is parallel
to S and a direction in the direction of the motion of the electromagnetic wave.

(f) reflection coefficient
Solution: The reflection coefficient is the factor R by which the amplitude of an in-
coming wave is reduced upon reflection. Given an incoming wave to a surface, there are
two outgoing waves from the surface - the reflected wave and the transmitted wave. By
applying the appropriate boundary conditions on ξ and ξ̇ in the media on each side of
the surface, Rξ̇, Rξ, Rp and other reflection coefficients can be calculated, in terms of
the physical characteristics (ie. the impedances or relative impedances) of the media in
question.

(g) sound decibel level
Solution: The decibel scale is a logarithmic function of the relative intensity of a
sound, measured relative to the quietest sound the average human ear can detect (about
10−12 w/m2). The sound decibel level is given by ∆ = 10 log10

(
i
i0

)
. As the threshold for

pain is about 1w/m2, typical sound levels range from just above 0 decibels to around 120
or 130 decibels. humans are generally able to discriminate a difference in sound decibel
levels of slightly more than 1 db.



2. A string which is initially straight is struck with a broad mallet of width 2a. At time t = 0,
the mallet imparts an initial velocity v0 to the particles which lie between x = −a and x = +a.

ẏ(x, 0) = ψ(x) =


0, x < −a,
v0, −a ≤ x ≤ a,
0, a < x.

(a) What is the displacement y(x, t) at times t > 0? [5]
Solution: This problem is very similar to Towne Section 1.8 Example 2, pg 15.
The unique solution to the wave equation subject to the given initial conditions is

y(x, t) = f(x− ct) + g(x+ ct)

=
1
2
[φ(x+ ct) + φ(x− ct) + χ(x+ ct)− χ(x− ct)],

so the initial condition is that y(x, 0) = φ(x) = 0 and ẏ(x, 0) = cχ(x) = ψ(x) as above.
Integrating the expression for ψ(x) from −∞ to x, we find

χ(x) =
1
c

∫ x

−∞
ψ(x)dx =


0, x < −a,

v0x/c, −a ≤ x ≤ a,
v02a/c, a < x.

Since f(x) = 1
2 [φ(x)− χ(x)] = −1

2χ(x), the + wave shape is given by:

f(x) =


0, x < −a,

−v0x/2c, −a ≤ x ≤ a,
−v0a/c, a < x.

Since g(x) = 1
2 [φ(x) + χ(x)] = 1

2χ(x) = −f(x), the - wave shape is given by:

g(x) =


0, x < −a,

v0x/2c, −a ≤ x ≤ a,
v0a/c, a < x.

The overall solution is given by replacing x with x± ct in f and g to give:

y(x, t) = f(x− ct) + g(x+ ct)

f(x− ct) =


0, (x− ct) < −a,

−v0(x− ct)/2c, −a ≤ (x− ct) ≤ a,
−v0a/c, (x− ct) < x.

g(x+ ct) =


0, (x+ ct) < −a,

v0(x+ ct)/2c, −a ≤ (x+ ct) ≤ a,
v0a/c, a < (x+ ct).

(b) Describe the shapes of the + and - wave components. [3]
Solution: As shown above by f(x) and g(x) above, the waves are wedges with slopes of
±v0/2c, heights of v0a/c, and having slopes of length of 2a. The f wedge travelling in
the + direction is downward (−y direction) and the g wedge travelling in the - direction
is upward (+y direction).

(c) What does the string look like at about time t ≈ a/4c? (Sketch the graph of y(x, t) at
this time.) [2]
Solution: At this time the each wave will have moved about one quarter of the distance
a, so there will be an upward slope (up from zero) from about −a/4 to a/4, a flat portion
of height v0a/8c from a/4 to a3/4 and a slope back down to zero from a3/4 to a5/4.



3. The velocity distribution in an acoustic place wave is given by the function

ξ̇(x, t) = ξ̇m sin (kx) cos (ωt).

(a) What is the corresponding pressure distribution? [6]
Solution: The pressure distribution is given by

p(x, t) = −Ba
∂ξ

∂x
(x, t)

so we need to intigrate ξ̇(x, t) with respect to t, and then differentiate with respect to x
in order to get an expression for p(x, t).

ξ(x, t) =
∫
ξ̇(x, t)dt =

∫
ξ̇m sin (kx) cos (ωt)dt

= ξ̇m sin (kx)
∫

cos (ωt)dt

= ξ̇m sin (kx)
sin (ωt)
ω

=
ξ̇m
ω

sin (kx) sin (ωt)

p(x, t) = −Ba
∂ξ

∂x
(x, t) = −Ba

∂

∂x

[
ξ̇m
ω

sin (kx) sin (ωt)

]

= −Baξ̇m
ω

sin (ωt)
∂

∂x
[sin (kx)] = −Baξ̇mk

ω
sin (ωt) cos (kx)

= −ξ̇m
Bak

ω
sin (ωt) cos (kx)

= −ξ̇m
Ba

c
sin (ωt) cos (kx)

= −ξ̇mZ sin (ωt) cos (kx)

(b) At what values of x could a rigid surface be placed without disturbing the given distri-
butions? [4]
Solution: A rigid surface will force the displacements of particles at that position to be
zero, thus we could place a rigid surface at any of the nodes of ξ, where ξ(x, t) = 0, so

ξ(x, t) =
ξ̇m
ω

sin (kx) sin (ωt) = 0 =⇒ sin (kx) = 0

=⇒ kx = nπ =⇒ x = n
π

k
= n

cπ

ω
n = 0,±1,±2,±3, . . .

Thus we have that for any integer n, a rigid surface could be placed at x = nπ/k and
the given distributions would remain unchanged. This is the same result that we would
have obtained by requiring that the surface was placed at the nodes of ξ̇(x, t).
Alternatively and equivalently we could have performed the calculation by requiring that
the rigid surface be placed at the anti-nodes of p(x, t) since rigid surfaces constrain the
pressure to be ±maxima in the same way that they constrain the displacement (and
displacement velocity) to be zero.



4. Waves on a liquid surface have an isomorphic relationship to acoustic waves, and are called
“Tidal Waves” by Towne. Such waves are described by the variables: h (the undisturbed
depth of the liquid), ρ (the density of the liquid), ξ(x, t) (the horizontal displacement of
particles originally at x), η(x, t) (the elevation of the surface above the undisturbed depth h,
corresponding to the plane of particles originally at x), and g (the acceleration of gravity).

The (acoustic ↔ tidal) isomorphism is: (ξ ↔ ξ), (p↔ ρgη), (Ba ↔ ρgh), and (ρ0 ↔ ρ).

(a) What is ctidal, the wave propagation velocity for tidal waves, in terms of the tidal vari-
ables? [3]
Solution: c =

√
Ba/ρ0 ↔

√
ρgh/ρ =

√
gh = c

(b) How many times faster are tidal waves on pure water (ρfresh = 998 kg/m3) than on
seawater (ρsalt = 1025 kg/m3), for depths of h = 10m? [3]
Solution: The speed of tidal waves only depends on the height of the wave and the
acceleration of gravity, not on the physical characteristics of the fluid, so the tidal waves
on pure water travel at the same speed as the tidal waves of seawater at the given depths,
cfresh = csalt.

(c) For a progressive sinusoidal tidal wave moving in the + direction (to the right), the water
particles on the surface move in flat elliptical paths. In what direction are the particles
moving at the crests and troughs? Equivalently, are they clockwise or counter-clockwise
ellipses? [4]
Solution: The motion of the particles is a combination of their vertical velocity given
by η̇ and their horizontal velocity ξ̇. At the tops and bottoms of the crests, their vertical
speed is zero since they are at the extremes of their motion (they have stopped and are
turning around). We want to find out if ξ̇ is positive (to the right) or negative (to the
left). The isomorphism gives us (ξ ↔ ξ) and (p↔ ρgη), so in the acoustic case we would
compare ξ̇acoustic with ṗacoustic and apply that result to the relationship between ξ̇tidal

and η̇tidal.
For the acoustic case, we know that p+ = Zξ̇+, so ṗ+ = Zξ̈+, for a sinusoidal wave, such
as ξ = ξm sin (kx− ωt) this gives us:

ξ+ = ξm sin (kx− ωt)
ξ̇+ = ωξm cos (kx− ωt)
ξ̈+ = −ω2ξm sin (kx− ωt)
p+ = Zωξm cos (kx− ωt) = pm cos (kx− ωt)
ṗ+ = Zξ̈+ = −Zω2ξm sin (kx− ωt) = −pmω sin (kx− ωt).

For the tidal wave we replace p with ρgη, and we can then divide through by ρg to get:

ξ+ = ξm sin (kx− ωt)
ξ̇+ = ωξm cos (kx− ωt)
η+ = ηm cos (kx− ωt)
η̇+ = −ηmω sin (kx− ωt).

At the top of the crest (where the cosine of (kx − ωt) is equal to one), η+ = +ηm (the
maximum) η̇+ = 0 (momentarily at rest), ξ+ = 0 (the undisturbed horizontal position)
and ξ̇+ = +ξm, so the particle is moving in the + direction. At the bottom of the trough
(where the cosine of (kx − ωt) is equal to negative one), η+ = −ηm (the minimum)
η̇+ = 0, ξ+ = 0 and ξ̇+ = +ξm, so the particle is moving in the + direction.
Thus the particle describes a clockwise motion when the vertical and horizontal move-
ments are both taken into account.



5. A piston of fixed displacement amplitude and frequency is radiating plane waves into a region
filled with an ideal gas. In each of the following cases describe the variation in the power
output of the piston as the indicated changes are made.
(a) The temperature is held constant but the region is pumped out so that the base pressure

is lowered. [4]
Solution: For all of these questions, we are really only interested in the radiative power
output of the piston since the net convective intensity is zero for any periodic piston
motion. For a progressive sinusoidal wave

i = pξ̇ = Zξ̇2 =
p2

Z
.

Additionally, the speed of an acoustic wave is given by c2 = γRT0/M , so changing the
pressure without changing the temperature will not change the value of c, but it will
change the mass density ρo.
For a given displacement amplitude and frequency, we know that

p(x, t) = −Ba
∂ξ

∂x
(x, t),

so for a sinusoidal wave we have

ξ(x, t) = ξm sin (kx− ωt)
ξ̇(x, t) = ωξm cos (kx− ωt)
p(x, t) = −Bakξm cos (kx− ωt)

= −Ba
ω

c
ξm cos (kx− ωt)

= −Zωξm cos (kx− ωt)
= −ρ0cωξm cos (kx− ωt)

∴ i = pξ̇ = −ρ0cω
2ξ2m cos2 (kx− ωt).

Thus, lowering the base pressure will lower the density ρo, and lower the power output
of the piston linearly with the decrease in base pressure..

(b) The pressure remains constant but the temperature is lowered. [3]
Solution: The power output of the piston is again given by i = −ρ0cω

2ξ2m cos2 (kx− ωt),
and the speed by c2 = γRT0/M , so if the pressure is kept constant but the temperature
is lowered, the speed c will decrease while the density ρo remains the same and the power
output of the piston will decrease proportional to the square root of the decrease in
temperature.

(c) The region is originally filled with nitrogen which is then replaced by hydrogen at the
same temperature and pressure. You may need this data for hydrogen and nitrogen: [3]

hydrogen: ρH2 = 0.0899 kg/m3, cH2 = 1270m/s, γH2 = 1.40
nitrogen: ρN2 = 1.251 kg/m3, cN2 = 337m/s, γN2 = 1.40

Solution: As before using i = −ρ0cω
2ξ2m cos2 (kx− ωt) we have

iH2

iN2

=
ρH2cH2ω

2ξ2m cos2 (kx− ωt)
ρN2cN2ω2ξ2m cos2 (kx− ωt)

=
ρH2cH2

ρN2cN2

=
(0.0899)(1270)
(1.251)(337)

= 0.2708 . . .

iH2

iN2

≈ 0.27.

Thus, replacing the nitrogen with hydrogen reduces the power output to about 27% of
the initial power output.



6. Electromagnetic plane waves. Starting with Maxwell’s equations in free space:
∇ ·E = 0, ∇ ·H = 0, ∇×E = −µ(∂H/∂t), ∇×H = ε(∂E/∂t),
(a) show how a one dimensional wave equation for transverse magnetic waves can be devel-

oped. [6]
Solution: This follows directly from the procedure used in Towne, Chapter 6, examining
the case where all the components of E and H vanish except for Ey and Hz so Maxwell’s
equations become

∂Ey

∂z
= 0 (6.01)

∂Hz

∂y
= 0 (6.02)

−∂Ey

∂z
ı̂+

∂Ey

∂x
k̂ = −µ∂Hz

∂t
k̂ (6.03)

∂Hz

∂y
ı̂− ∂Hz

∂x
̂ = ε

∂Ey

∂t
̂. (6.04)

Taking the separate components of (6.03) and (6.04) we get
∂Ey

∂y
= 0 (6.05)

∂Ey

∂x
= −µ∂Hz

∂t
(6.06)

∂Hz

∂y
= 0 (6.07)

−∂Hz

∂x
= ε

∂Ey

∂t
. (6.08)

The equations (6.01), (6.02), (6.05) and (6.07) will only be satisfied if Ey and Hz are
functions of at most x and t. If we differentiate (6.06) with respect to t and (6.08) with
respect to x we get

∂2Ey

∂t∂x
= −µ∂

2Hz

∂t2
(6.09)

−∂
2Hz

∂x2
= ε

∂2Ey

∂x∂t
. (6.10)

Since the order of differentiating (t or x) does not matter, we can put (6.10) into (6.09)
to get

∂2Hz

∂x2
= εµ

∂2Hz

∂t2
. (6.11)

We have that (6.11) is a one dimensional wave equation for transverse magnetic waves.Similarly,
we could differentiate (6.06) with respect to x and (6.08) with respect to t and put the
results together to arrive at the wave equation for electric field waves.

(b) What is the speed of this wave? [2]
Solution: Equation (6.11) is a wave equation with c2 = 1/µε.

(c) What type of polarization does this wave have? [2]
Solution: This situation is one where the electric and magnetic waves propagate in
either direction along the |̂× k̂| = ı̂, or x, direction with the electric field only having y
components, and the magnetic field only having z components. The direction of propa-
gation not only follows from the direction of S = E×H, but also from the fact that both
functions are only functions of only x and t. Without knowing the functional form of the
x and t dependance for E and H, we cannot tell if the waves are going in the positive,
negative, or both directions. Thus this is a linearly polarized plane electromagnetic wave
travelling in the ±x direction.


