
Physics 380H - Wave Theory Homework #11 - Solutions
Fall 2004 Due 12:01 PM, Monday 2004/12/06

[35 points total]

“Journal” questions:
– How did the expectation for the course match with how the course actually went? Did you meet
your own goals for the course? Did your goals or expectations for the course change through the
semester? In what ways?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Towne P15-5, pg 373) The initial conditions for a string with two fixed ends are

y(x, 0) = 0, and ẏ(x, 0) = sin (2πx/l).

It is clear that these initial conditions correspond to a particular choice of amplitude and phase
of the first harmonic. Show that the formal machinery of the normal-modes expansion leads
to the conclusion that this is the only participating mode and exhibit the resulting solution
for y(x, t). [10]

Solution: The normal-modes expansion gives a general solution of the form

y(x, t) =
∞∑

n=1

yn(x, t) =
∞∑

n=1

{sin (knx) [an sin (ωnt) + bn cos (ωnt)]}

=
∞∑

n=1

Cn sin (knx) sin (ωnt + φn),

with kn = nπ/l and ωn = ckn = cnπ/l, so we need to find an and bn (or equivalently Cn and
φn).

bn =
2
l

∫ l

0
y(x, 0) sin (knx) dx anωn =

2
l

∫ l

0
ẏ(x, 0) sin (knx) dx

=
2
l

∫ l

0
(0) sin (knx) dx =

2
l

∫ l

0
sin
(

2πx

l

)
sin (knx) dx

= 0 =
2
l

l

2
= 1 for m = 2

= 0 for m 6= 2.

Thus all an and bn are zero except for a2 = 1/(ω2) = (1)/(2ω1) = 1/(2ck1) = l/(2πc). Our
solution is thus

y(x, t) = a2 sin (k2x) sin (ω2t)

y(x, t) =
1
ω2

sin (k2x) sin (ω2t)

=
1

2ω1
sin (2k1x) sin (2ω1t)

y(x, t) =
l

2πc
sin
(

2π

l
x

)
sin
(

2πc

l
t

)
.

Note that the given solution satisfies the initial conditions, and that of the infinite series, only
the n = 2 term is non-zero.



2. (From Towne P15-7, pg 373) A string with two fixed ends is plucked at the centre. Assume
that the string is of length l and is at rest at t = 0 and that the initial profile is triangular of
height h:

y(x, 0) =


2h

l
x, x ≤ l

2
,

2h

l
(l − x),

l

2
> x.

.

Show that the even harmonics will be missing and that the expansion coefficients are an = 0
and

bn = (−1)m 8h

(2m + 1)2π2

for n = 2m + 1. [10]

Solution: The initial conditions are y(x, 0) as above and ẏ(x, 0) = 0. The normal-modes
expansion gives a general solution of the form

y(x, t) =
∞∑

n=1

yn(x, t) =
∞∑

n=1

{sin (knx) [an sin (ωnt) + bn cos (ωnt)]}

with kn = nπ/l and ωn = ckn = cnπ/l. We need to find an and bn.

anωn =
2
l

∫ l

0
ẏ(x, 0) sin (knx) dx =

2
l

∫ l

0
(0) sin (knx) dx = 0

∴ an = 0

bn =
2
l

∫ l

0
y(x, 0) sin (knx) dx

=
2
l

∫ l/2

0
y(x, 0) sin (knx) dx +

2
l

∫ l

l/2
y(x, 0) sin (knx) dx

=
2
l

∫ l/2

0

2h

l
x sin (knx) dx +

2
l

∫ l

l/2

2h

l
(l − x) sin (knx) dx

=
4h

l2

(∫ l/2

0
x sin (knx) dx +

∫ l

l/2
(l − x) sin (knx) dx

)

=
4h

l2

(∫ l/2

0
x sin (knx) dx + l

∫ l

l/2
sin (knx) dx−

∫ l

l/2
x sin (knx) dx

)

=
4h

l2

([
sin (knx)

k2
n

− x cos (knx)
kn

]l/2

0

+ l

[
− cos (knx)

kn

]l

l/2

−
[
sin (knx)

k2
n

− x cos (knx)
kn

]l

l/2

)



Evaluating the terms in brackets along with kn = nπ/l gives us:

bn =
4h

l2

([
sin (nπ/2)

k2
n

− l/2 cos (nπ/2)
kn

]
+ l

[
− cos (nπ)

kn

]
−
[
sin (nπ)

k2
n

− l cos (nπ)
kn

]
−
[
sin (kn0)

k2
n

− (0) cos (kn0)
kn

]
− l

[
− cos (nπ/2)

kn

]
+
[
sin (nπ/2)

k2
n

− l/2 cos (nπ/2)
kn

])

=
4h

l2

([
sin (nπ/2)

k2
n

− l/2 cos (nπ/2)
kn

]
+ l

[
− cos (nπ)

kn

]
−
[
− l cos (nπ)

kn

]
− l

[
− cos (nπ/2)

kn

]
+
[
sin (nπ/2)

k2
n

− l/2 cos (nπ/2)
kn

])

=
4h

l2

(
2
sin (nπ/2)

k2
n

− 2
l/2 cos (nπ/2)

kn
+ l

cos (nπ/2)
kn

)
=

4h

l2k2
n

(2 sin (nπ/2)− lkn cos (nπ/2) + lkn cos (nπ/2))

=
8h

l2k2
n

sin
(nπ

2

)
=

8h

n2π2
sin
(nπ

2

)

For even values of n, sin (nπ/2) = 0 and bn = 0. For odd values of n sin (nπ/2) = ±1. Thus
we have that for the odd values of n given by n = 2m + 1 for m = 0, 1, 2, . . . we have that

bn = (−1)m 8h

n2π2
= (−1)m 8h

(2m + 1)2π2
.

Since all of the even coefficients (an as well as bn) are zero, the overall function is odd. The
only odd coefficients are bn as given above, since an = 0. All together, the coefficients are:

an = 0, n = 1, 2, 3, . . .

bn =

 0, n even

(−1)m 8h

(2m + 1)2π2
, n = 2m + 1 odd



3. (From Towne P15-10, pg 374) A string of length l is fixed at both ends. If all points on the
string are initially at rest and the initial shape of the string is specified by y(x, 0) = x(sin kx),
where k = π/l,

(a) find the coefficients in the Fourier series representation of this function. [5]
Solution: The initial conditions are y(x, 0) = x sin (πx/l) as above and ẏ(x, 0) = 0. The
normal-modes expansion gives a general solution of the form

y(x, t) =
∞∑

n=1

yn(x, t) =
∞∑

n=1

{sin (knx) [an sin (ωnt) + bn cos (ωnt)]}

with kn = nπ/l and ωn = ckn = cnπ/l. We need to find an and bn.

anωn =
2
l

∫ l

0
ẏ(x, 0) sin (knx) dx =

2
l

∫ l

0
(0) sin (knx) dx = 0

∴ an = 0

bn =
2
l

∫ l

0
y(x, 0) sin (knx) dx

=
2
l

∫ l

0
x sin

(πx

l

)
sin
(nπx

l

)
dx,

For n = 1 we have

b1 =
2
l

∫ l

0
x sin2

(πx

l

)
dx

=
2
l

[
x2

4
− xl

4π
sin
(

2πx

l

)
− l2

8π2
cos
(

2πx

l

)]l

0

=
2
l

[
l2

4
− ll

4π
sin
(

2πl

l

)
− l2

8π2
cos
(

2πl

l

)
+

l2

8π2
cos (0)

]
=

2
l

[
l2

4

]
=

l

2
.

For n > 1 we have

bn =
2
l

∫ l

0

x

2

[
cos
(nπx

l
− πx

l

)
− cos

(nπx

l
+

πx

l

)]
dx

=
∫ l

0

x

l

[
cos
(
(n− 1)

πx

l

)
− cos

(
(n + 1)

πx

l

)]
dx

=
∫ l

0

x

l
cos
(
(n− 1)

πx

l

)
dx−

∫ l

0

x

l
cos
(
(n + 1)

πx

l

)
dx

=
[

l

(n− 1)2π2
cos
(
(n− 1)

πx

l

)
+

x

(n− 1)π
sin
(
(n− 1)

πx

l

)]l

0

−
[

l

(n + 1)2π2
cos
(
(n + 1)

πx

l

)
+

x

(n + 1)π
sin
(
(n + 1)

πx

l

)]l

0

=
l

(n− 1)2π2
cos ((n− 1)π)− l

(n− 1)2π2
− l

(n + 1)2π2
cos ((n + 1)π) +

l

(n + 1)2π2

=
l(cos ((n− 1)π)− 1)

(n− 1)2π2
− l(cos ((n + 1)π)− 1)

(n + 1)2π2



For odd values of n, cos ((n− 1)π) = cos ((n + 1)π) = +1, thus

bn =
l(1− 1)

(n− 1)2π2
− l(1− 1)

(n + 1)2π2

= 0

For even values of n, cos ((n− 1)π) = cos ((n + 1)π) = −1, thus

bn =
l(−1− 1)
(n− 1)2π2

− l(−1− 1)
(n + 1)2π2

=
−2l

π2

(
1

(n− 1)2
− 1

(n + 1)2

)
=
−2l

π2

(n + 1)2 − (n− 1)2

(n− 1)2(n + 1)2

=
−2l

π2

(n2 + 2n + 1)− (n2 − 2n + 1)
[(n− 1)(n + 1)]2

=
−2l

π2

4n

(n2 − 1)2

=
−8nl

π2(n2 − 1)2

All together, the coefficients are:

an = 0, n = 1, 2, 3, . . .

bn =


l

2
, n = 1,

0, n > 1 and n odd
−8nl

π2(n2 − 1)2
, n even



(b) Draw a bar graph indicating the relative energies of the first few modes. [5]
Solution: The total energy from the nth mode is given by

En =
σlω2

n

4
(a2

n + b2
n),

so in this case since an = 0 for all n, and ωn = ckn = cnπ/l, we have

En =
σlc2n2π2

4l2
b2
n =

σc2π2

4l
n2b2

n.

For the first few values of n we get the following (define E0 = (σc2l)/(π2) to make things
prettier):

E1 =
σc2π2

4l
12b2

1 =
σc2π2

4l

l2

4
=

σc2l

π2

(
π4

16

)
≈ E0(6.088 . . . )

E2 =
σc2π2

4l
22b2

2 = E0
16 · 24

(22 − 1)4
= E0

(
256
81

)
≈ E0(3.160 . . . )

E3 = 0

E4 =
σc2π2

4l
42b2

4 = E0
16 · 44

(42 − 1)4
= E0

(
4096
50625

)
≈ E0(0.0809 . . . )

E5 = 0

E6 =
σc2π2

4l
62b2

6 = E0
16 · 64

(62 − 1)4
= E0

(
20736

1500625

)
≈ E0(0.0138 . . . )

. . .

En =
σc2π2

4l
n2b2

n =
σc2π2

4l

64n4l2

π4(n2 − 1)4
= E0

16n4

(n2 − 1)4
, n even.

We can make a bar graph in units of E0, with only E1 and even values of En being
non-zero.
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Figure 1: Relative En for n ≤ 6 in units of E0.
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Figure 2: Relative En for n = 4, 6, 8 in units of E0.

We get figure 1 and figure 2 using Maple and the following commands, creating a bar
graph by plotting individual points and joining them in a line plot. Note that figure 2
also includes the curve which the non-zero values of En are below for n > 1.

> restart; with(plots);
> E_0 := 1;
> Efr := n -> E_0*(16*n^4)/(n^2-1)^4;
> En := [ [ .9, 0], [ .91, Pi^4/16], [ 1.09, Pi^4/16], [ 1.1, 0],

[ 1.9, 0], [ 1.91, Efr(2)], [ 2.09, Efr(2)], [ 2.1, 0],
[ 3.9, 0], [ 3.91, Efr(4)], [ 4.09, Efr(4)], [ 4.1, 0],
[ 5.9, 0], [ 5.91, Efr(6)], [ 6.09, Efr(6)], [ 6.1, 0],
[ 7.9, 0], [ 7.91, Efr(8)], [ 8.09, Efr(8)], [ 8.1, 0] ];

> plot([En], n=0..6.5, E=0..(7));
> plot([En,Efr(n)], n=(3.5)..9, E=0..(0.1));

(c) Graph the function y(x, 0) and compare this with a graph of the sum of the two most
prominent modes in the Fourier series at t = 0. [5]
Solution: The two most prominent modes in the Fourier series are n = 1 and n = 2, so
we can graph y(x, 0) as well as y1(x, 0) + y2(x, 0) and we expect them to be very similar,
particularly since such a small fraction of the energy is in any of the other modes.
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Figure 3: y(x, 0) and y1(x, 0) + y2(x, 0)

We get figure 3 using Maple and the following commands. We have arbitrarily used a
string length of 2 units - any other value would give similar results. Note how close
the two curves match, indicating that the two modes used do in fact give a very good
approximation of the function.

> restart; with(plots);
> l := 2; k := Pi/l; k_1 := Pi/l; k_2 := 2*Pi/l;
> b_1 := l/2; b_2 := (-16*l)/(Pi^2*9);
> ytot := x-> x*sin(k*x);
> y_1 := x-> b_1*sin(k_1*x);
> y_2 := x-> b_2*sin(k_2*x);
> plot([ytot(x), (y_1(x)+y_2(x))], x=0..l*1.01, y=0..1.2, colour=[navy,blue],

legend=["y", "y_1 + y_2"], linestyle=[1,3]);

Headstart for next week, Week 12, starting Monday 2004/12/06:
– Read Chapter 15 “Waves Confined to a Limited Region” in Towne, omit 15-14, 15-15
– – Section 15-12 “Forced motion of a string”
– – Section 15-13 “Eigenfrequencies as resonance frequencies of a string driven sinusoidally at one
end”
– – Section 15-16 “Normal modes of a uniformly stretched rectangular membrane”
– – Section 15-17 “Fourier integral analysis on a semi-infinite string”
– – Section 15-18 “Fourier analysis over the whole x-axis”
– Review notes, review texts, review assignments, learn material, do well on exam


