
Physics 380H - Wave Theory Homework #10 - Solutions
Fall 2004 Due 12:01 PM, Monday 2004/11/29

[45 points total]

“Journal” questions:
– How do you feel about the usefulness and/or effectiveness of these “Journal” types of activities?
What do you think their best aspect has been? What change to their format or content might
improve their usefulness and/or effectiveness? Why?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Towne P14-5, pg 319) Consider an array of N coherent point sources equally spaced
along a straight line, the distance between each pair being d. Assume that the sources are of
equal strength and in phase.
(a) Use the Fraunhofer approximation and sum the contributions from each source to deter-

mine the net signal at a distant point of observation. (This method of direct summation
is equivalent to that used in Towne Chapter 11 for the double source.) [10]
Solution: The net signal at the distant point of observation will be the sum from al
the point sources. As in Towne Chapter 11, since our point is distant, we can assume
that the amplitudes A(rn) are approximately equal to A(r) = A0 where r is the average
value of rn, or equivalently the distance from the centre of the array. We also have that
rn = r − (n − 1)d sin θ since each source is a distance of d from the next. The phase
differences φn are related to by path differences which are given by δn = (n − 1)d sin θ,
namely φn = kδn = (n− 1)kd sin θ.

ψ(P, t) =
N∑

n=1

ψn(P, t) =
N∑

n=1

A(rn) cos (ωt− krn)

= A0

N∑
n=1

cos (ωt− krn) = A0

N∑
n=1

cos (ωt− kr + (n− 1)kd sin θ)

= A0

N∑
n=1

<
{

ei(ωt−kr+(n−1)kd sin θ)
}

= A0

N∑
n=1

<
{

ei(ωt−kr)ei(n−1)kd sin θ
}

= A0<

{
ei(ωt−kr)

N∑
n=1

ei(n−1)kd sin θ

}

This is very reminiscent of the vibration curve construction in Towne Chapter 12, but
being a discrete sum rather than an integral. Graphically one could draw out unit vectors
head to tail on the complex plane and find their resultant sum in order to get the net
wave function. The sum is a geometric series of ratio e−i(n−1)kd sin θ, and as in Towne
Chapter 14 we have

N∑
n=1

ei(n−1)kd sin θ =
1− eiNkd sin θ

1− eikd sin θ

=
e−i(Nkd/2) sin θ − ei(Nkd/2) sin θ

e−i(kd/2) sin θ − ei(kd/2) sin θ
· ei(Nkd/2) sin θ

ei(kd/2) sin θ

=
sin
(

Nkd
2 sin θ

)
sin
(

kd
2 sin θ

) ei(N−1)(kd/2) sin θ.



With γ = (kd/2) sin θ and r = r − (N − 1)(d/2) sin θ, we have

ψ(P, t) = A0<
{

ei(ωt−kr)

(
sinNγ
γ

)}
ψ(P, t) = A0

(
sinNγ
γ

)
<
{

ei(ωt−kr)
}

ψ(P, t) = A0

(
sinNγ
γ

)
cos (ωt− kr)

To find the (average) intensity, we square the wave function (taking the average value of
the time varying factor) and multiply by the appropriate constant of proportionality to
get

I(θ) = I0

(
sinNγ
γ

)2

.

(b) Show that the angular distribution of intensity is the same as that obtained from Towne
Equation 14-8 by taking the limit as the length of the individual line segments tends to
zero. [5]
Solution: As a→ 0, so to does β → 0 and sinβ/β → 1, so Town Equation 14-8 goes to

I(θ) = I0

(
sinβ
β

)2(sinNγ
γ

)2

= I0

(
sin
(

ka
2 sin θ

)
ka
2 sin θ

)2(
sinNγ
γ

)2

I(θ) → I0

(
sinNγ
γ

)2

Thus as the length of the individual line segments tends to zero, the intensity becomes
that due to a N point sources, as expected.



2. (From Towne P14-9, pg 320)

(a) What resolving power is required to resolve the sodium doublet and what information is
required about the grating to predict the smallest-order spectrum in which the doublet
will be resolved? [5]
Solution: For the sodium doublet λ1 = 5890 Å and λ2 = 5896 Å, so the average wave-
length of the doublet is given by λ = (λ1 +λ2)/2 = 5893 Å. The resolving power is given
by

λ

(∆λ)min
=

(5893 Å)
(6 Å)

= 982.1666 . . . .

The resolving power is related to the grating characteristics by

λ

(∆λ)min
= nN =⇒ n =

λ

N(∆λ)min

where n is the order of the observed spectrum and N is the total number of slits being
illuminated. Thus a resolving power of about 982.2 is required to resolve the sodium
doublet and in order to predict the smallest-order spectrum in which the doublet will be
resolved it is necessary to know how many slits N are being illuminated.

(b) Show that a knowledge of the total width of the grating is sufficient to obtain a lower
bound for the angle at which a resolved doublet will be obtained. [5]
Solution: The slit spacing d as well as the order and wavelength determine the angle of
the observed fringe via

d sin θ = nλ.

If we know the total width of the grating l, the slit spacing is a function of the number
of lines, namely d = l/N . Putting these together we find that the angle of the resolved
doublet can be found via

sin θ =
nλ

d
=
nNλ

l
=

λ

(∆λ)min

λ

l
=

λ2

l(∆λ)min

θ = arcsin
(

λ2

l(∆λ)min

)
.

Thus, given desired resolving power and the average wavelength, a knowledge of the total
width of the grating is sufficient to obtain a lower bound for the angle at which a resolved
doublet will be obtained.

(c) Calculate the order number and the angle of the first doublet resolved by a one-inch
(2.54 cm) grating of 200 lines. [5]
Solution: For N = 200, we would need to use the order n = 982/200 ≈ 5 to resolve the
sodium doublet, this can be found at

θ = arcsin
(
nλ

d

)
== arcsin

(
nNλ

l

)
= arcsin

(
(5)(200)(5893 Å)

(2.54 cm)

)
= arcsin (0.02320 . . . ) = 0.023202 ≈ 0.0232 radians.

The doublet is resolved at about 0.0232 radians, corresponding to the 5th order.



3. (From Towne P15-1, pg 372) A string of length l is fixed at x = 0 but is “free” at x = l. (The
device of a frictionless and massless slip ring would be required to maintain tension in the
string and yet permit no transverse component of the force acting on the free end.)

(a) Give arguments to show that the general motion is periodic and deduce the period. [5]
Solution: At the free end, any waves will be reflected with no phase change, and at
the fixed end any waves will be reflected with a phase change of π or 180◦. Thus any
arbitrary wave will traverse the length of the string four times before it returns to its
initial position, travelling in the initial direction. This is in contrast to a string with
both ends fixed which has an arbitrary wave returning to the initial position travelling in
the initial direction after it travels the length of the string twice. Thus for the one-fixed-
one-free-end string, the maximum period is Tmax = 4l/c and the motion is necessarily
periodic.
Alternatively one could argue that any arbitrary wave can be composed of a sum of
sinusoidal waves (via Fourier), and the boundary conditions of y(0, t) = 0 (the “fixed”
end) and y′(l, t) = 0 (the “free” end) give a maximum period of Tmax = 4l/c after a bit
of math manipulations. Or one could note that the fundamental mode of the string has
a wavelength of 4l, and thus a period of 4l/c, which is the maximum period of any mode.

(b) By direct substitution of a function of sinusoidal form determine the frequencies which
any sinusoidal solution must have. [5]
Solution: Let us assume a solution of y(x, t) = A sin (kx) sin (ωt− φ) which we know is
of the proper form for a periodic wave on a string. if we apply the boundary conditions
we get the following (note that the first boundary condition of y(0, t) = 0 is automatically
satisfied by this choice of solution) :

[y(x, t)]x=0 = 0
[
dy(x, t)

dx

]
x=l

= 0

A sin (k0) sin (ωt− φ) = 0 Aω cos (kl) sin (ωt− φ) = 0
∴ cos (kl) = 0

kl =
π

2
+ nπ, n = 0, 1, 2, 3, . . .

k =
(2n+ 1)π

2l
, n = 0, 1, 2, 3, . . .

=
mπ

2l
, m = 1, 3, 5, 7, . . .

The period is related to k by T = 2π/ω = 2π/kc so

T =
2π
kc

=
2π
c

2l
mπ

, m = 1, 3, 5, 7, . . .

=
4l
mc

, m = 1, 3, 5, 7, . . .

=
4l

(2n+ 1)c
, n = 0, 1, 2, 3, . . . .

Thus the maximum value for T is when m = 1 (or equivalently n = 0) and has a value
of Tmax = 4l/c which agrees with our arguments above.



(c) Use the method of separation of variables to deduce the necessary form of a product-form
solution satisfying the given boundary conditions. [5]
Solution: Following Towne in section 15-4 we assume a solution of product form, namely

y(x, t) = X(x)T (t),

and apply it to the wave equation to arrive at two differential equations, one for X(x) and
one for T (t) by collecting all expressions containing x on one side and those containing
t on the other side, and setting them both equal to some constant b. Thus we arrive at

X ′′(x)
X(x)

=
T ′′(t)
c2T (t)

= b.

The general solution for X(x) is thus

X(x) = c1e
√

bx + c2e−
√

bx.

Applying our first boundary condition that y(0, t) = 0 gives us

X(0) = 0 = c1 + c2 =⇒ c2 = −c1.

This is where we deviate from Towne – our second boundary condition is X ′(l, t) = 0
and along with c2 = −c1 it gives us[

dX(x)
dx

]
x=l

=
√
bc1e

√
bl +

√
bc1e−

√
bl = 0

√
bc1e

√
bl = −

√
bc1e−

√
bl

e
√

bl = −e−
√

bl

e2
√

bl = −1.

For the complex number e2
√

bl to be equal to −1 we must have that 2
√
bl is equal to

i(π + 2nπ), thus

2
√
bl = i(π + 2nπ), n = 0, 1, 2, 3, . . .
√
b = i

(2n+ 1)π
2l

, n = 0, 1, 2, 3, . . .
√
b = i

mπ

2l
, m = 1, 3, 5, 7, . . .

b = −
(mπ

2l

)2
, m = 1, 3, 5, 7, . . . .

With this value for b we can define km = mπ/(2l) (or km = (2n+ 1)π/(2l)) and we get
the expression for X(x) of

X(x) = c1

[
eikmx − e−ikmx

]
= c3 sin (kmx), km =

mπ

2l
, m = 1, 3, 5, 7, . . .

= c3 sin (knx), kn =
(2n+ 1)π

2l
, n = 0, 1, 2, 3, . . . .

For T (t), we follow Towne exactly and arrive at T ′′(t) = −k2
mc

2T (t) = −ω2
mT (t) with a

general solution of
T (t) = c4 sin (ωmt− φ).



Putting it all together we have

y(x, t) = X(x)T (x)

= C sin (kmx) sin (ωmt− φ), ωm = ckm, km =
mπ

2l
, m = 1, 3, 5, 7, . . .

= C sin (knx) sin (ωnt− φ), ωn = ckn, kn =
(2n+ 1)π

2l
, n = 0, 1, 2, 3, . . . ,

where φ and C are arbitrary constants.

Headstart for next week, Week 11, starting Monday 2004/11/29:
– Read Chapter 15 “Waves Confined to a Limited Region” in Towne, omit 15-14, 15-15
– – Section 15-5 “Linear combination of normal-mode solutions”
– – Section 15-6 “Determination of the coefficients in a normal-modes expansion”
– – Section 15-7 “Independence of the energy contributions from different modes”
– – Section 15-8 “Normal-modes expansion of a rectangular pulse”
– – Section 15-9 “Energy spectrum of the rectangular pulse”
– – Section 15-10 “A too literal interpretation of the normal-modes expansion”
– – Section 15-11 “Normal-modes expansion of a sinusoidal wavetrain of limited extent”


