
Physics 380H - Wave Theory Homework #09 - Solutions
Fall 2004 Due 12:01 PM, Monday 2004/11/22

[50 points total]

“Journal” questions:
– Within the subject matter of this course, what do you think the best methods of evaluating stu-
dent knowledge and/or skills would be? What single change to how we do evaluation in this course
do you think would be best? What is the best feature of the evaluation method used in this course?
Why?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Towne P12-5, pg 290) Suppose that the edges of a laboratory slit are opened symmet-
rically about the centre and are driven at constant velocity. A monochromatic plane wave is
incident on the slit and the intensity variations at a fixed point of observation are recorded by
means of a photocell. Describe these Fraunhofer radiation intensity variations as a function
of time. [10]

Solution: If the sensor is at a fixed location, while the slit gets bigger, it will have the effect
of shrinking the Fraunhofer radiation intensity pattern as time increases. This will have an
effect that depends on the location of the sensor. If the sensor is at θ = 0 the intensity will
increase monotonically as the size of the slit increases. At other angles close to zero, there
may be maxima and minima until the pattern gets so narrow that there is essentially zero
intensity at the photosensor’s position.

We have the expression for the Fraunhofer radiation intensity pattern due to a line source of
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If the slit width is constantly increasing at a speed such that a = vt we can rewrite this
expression as
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However, this is not the whole picture, since I0 is actually a function of the slit width too! I0

is the intensity on the axis θ = 0, and clearly this depends on the size of the slit. As the slit
width gets extremely wide, I0 will tend towards the intensity of the incident plane wave, but
for smaller slit widths, the wave function at θ = 0 is proportional to the slit width, and thus
the intensity is proportional to the square of the slit width. If we define some new constant of
proportionality S as the source intensity per unit length squared (similar to Towne’s definition
of B in section 12-2) we have I0 = Sa2 = S(vt)2 and

I(θ) = S(vt)2
(

sinβ

β

)2

β =
kvt

2
sin θ

= S(vt)2
(

sin
(

kvt
2 sin θ

)
kvt
2 sin θ

)2

=
2S

k2

(
sin
(

kvt
2 sin θ

)
sin θ

)2

.

We see that this expression is an oscillatory function of t, as t increases for a given angle θ,
the intensity goes from zero to max and back with period T = 2π/(kv sin θ).



2. (From Towne P12-9, pg 290) Consider sound waves generated in water by means of the
sinusoidal vibration of a circular piston face of diameter 2 cm. How high must the frequency
be to obtain plane waves collimated to within 1◦? [10]

Solution: This problem is equivalent to finding the angle of the Airy disk of a circular
aperture. for a � λ the “conical beam” will have a semiangle such that sin θ ≈ θ = 1.22(λ/a).
To find the minimum frequency we apply the given values and the knowledge that c = νλ to
obtain:
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Given that for water, the speed of sound is about cw = 1483m/s and θ = 1◦ = 0.01745 radians,
we have

ν = 1.22
c

aθ
= 1.22

(1483 m/s)
(0.02 m)(0.01745 radians)

= 5.18314 . . . MHz ≈ 5.18 MHz,

the frequency of vibration must be at least 5.18 MHz to be collimated to within 1◦.



3. (From Towne P13-2, pg 303) See Towne Fig 13-2

(a) Estimate the values of u20 and u10 corresponding to the points Z20 and Z10. [5]
Solution: Using a piece of string, or a ruler curving along the spiral, we get a mea-
surement from the origin to point Z20 along the curve of about 10.6 cm. point Z10 is an
identical distance, but measured in the negative direction. Measuring the scale of the
figure we find that 1.6 units is about 9.62 cm, thus

u20 = 10.6 cm
1.6 units
9.62 cm

= 1.7629 units

≈ 1.76 units
u10 ≈ −1.76 units.

Actually, u20 and u10 are unitless numbers, so it would be more accurate to say that
u ≈ 1.76.

(b) Consider a slit of fixed width a = 2 mm and a wavelength of λ = 5000 Å. At what
distance should the observing screen be placed to have the slit edges correspond to Z10

and Z20 when the point of observation is on the axis θ = 0? Sketch I(θ) for this case. [5]
Solution: Given the slit width and wavelength we can find the value for R which will
give the values for u measured above. The arc length along the spiral is given by
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and is in fact independent of the observation angle. Rearranging we have
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= 1.2869 m ≈ 1.29 m.

Thus the screen should be placed at about 1.29 m from the slit. Note that Towne seems
to have measured a slightly larger value for u and thus calculated a slightly smaller value
for R.
To plot I(θ) we need to plot
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Since we know the Fresnel integrals C(c) and S(u) as well as u1 and u2, we should be
able to get Maple to plot I(θ). As might be expected, only values close to θ = 0 are
non-zero (in this case less than about 0.2◦).
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Figure 1: IFresnel(θ) for R = 1.29 m

We get figure 1 using Maple and the following commands.

> restart; with(plots);
> I_0 := 1; lambda := 5000*10^(-10); u_cm := 10.6;
> u := u_cm * 1.6/9.62; a := 0.002; R:=a^2/(lambda*2*u^2);
> u_1 := theta -> sqrt(2/(lambda * R))*(-a/2-R*sin(theta));
> u_2 := theta -> sqrt(2/(lambda * R))*(a/2-R*sin(theta));
> delta_X := theta -> FresnelC(u_2(theta))-FresnelC(u_1(theta));
> delta_Y := theta -> FresnelS(u_2(theta))-FresnelS(u_1(theta));
> I_fresnel := theta -> (I_0/2)*((delta_X(theta))^2 + (delta_Y(theta))^2);
> plot(I_fresnel(theta), theta=(-0.003)..(0.003), h=0..1.8);



(c) If the observing screen is moved closer to the slit, at approximately what position will
the centre of the pattern be a strong relative maximum? Sketch I(θ) for this case. [10]
Solution: If the screen is moved closer to the slit, then the arc length 2u will become
larger, and the points Z10 and Z20 will move further along the spiral, away from the
origin. The distance between them, |Z20−10|, will next be a maximum when the points
make it around to the outer part of the second time around the spirals. This corresponds
to a value for u of about 14.1 cm or

u = 14.1 cm
1.6 units
9.62 cm

= 2.34511 units.

We can calculate R as before

R =
a2

λ2u2
=

(2 mm)2

(5000 Å)2(2.34511)2

= 0.727330 m ≈ 0.73 m.

Thus there is a strong relative maximum at a screen distance of about 73 cm. Towne
seems to have measured a slightly smaller value for u and thus calculated a slightly larger
value for R. Actually, I cheated and used Maple below to try out various values for u_cm
to get a maximum value for evalf(I_fresnel(0)); – when I tried to measure carefully
I got a distance of about 13.5 cm which gave a value of R ≈ 79 cm, but had a slightly
smaller value for evalf(I_fresnel(0)); than 14.1 cm gave.



As before we can use Maple and the following commands to get figure 2
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Figure 2: IFresnel(θ) for R at second max

> restart; with(plots);
> u_cm := 14.1; u := u_cm * 1.6/9.62; I_0 := 1;
> lambda := 5000*10^(-10); a := 0.002; R:=a^2/(lambda*2*u^2);
> u_1 := theta -> sqrt(2/(lambda * R))*(-a/2-R*sin(theta));
> u_2 := theta -> sqrt(2/(lambda * R))*(a/2-R*sin(theta));
> delta_X := theta -> FresnelC(u_2(theta))-FresnelC(u_1(theta));
> delta_Y := theta -> FresnelS(u_2(theta))-FresnelS(u_1(theta));
> I_fresnel := theta -> (I_0/2)*((delta_X(theta))^2 + (delta_Y(theta))^2);
> plot(I_fresnel(theta), theta=(-0.003)..(0.003), h=0..1.8);



4. (From Towne P13-3, pg 304) Let a plane wave of sound be normally incident on a rectangular
slit. Assume that the narrow dimension of the slit is sufficiently small so that the diffraction
problem can be treated by application of the formulas for the radiation from a coherent linear
source. Take the long dimension of the slit to be 10 wavelengths. Consider a microphone
which can be moved to different positions along the axis θ = 0 (the perpendicular to the slit
at its midpoint).

(a) According to the Cornu spiral analysis there should be relative maxima and minima as
the microphone is moved along the axis. Approximately where are some of these expected
to be located? [5]
Solution: From the previous problem, we know that the second relative maximum is
at about u = 2.35, making a similar measurement we can find that the first relative
maximum is at about 7.2 cm along the spiral, with a value of u = 1.197. The first
minimum is at about 11.3 cm along the spiral, with a value of u = 1.88 and the second
minimum is at about 16.5 cm along the spiral, with a value of u = 2.74, etc. (I got
these values by plotting I(0) in Maple and looking for the relative minima and maxima
rather than trying to measure off of the diagram). Now we want to find the R values
corresponding to these values of u:
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(b) In what frequency range might this be a feasible experiment? (Consider the limited
ability of the microphone to resolve the maxima and minima and the requirement that
the dimensions of the slit be reasonable.) [5]
Solution: The differences between adjacent minima and maxima is on order of only one
wavelength, for example Rmax−3 −Rmin−3 ≈ 0.9λ, so our wavelength needs to be about
the size of our microphone if the microphone is to be able to measure these positions.
For a microphone of about 1 cm in size (larger and smaller ones are available) this gives
a maximum frequency of ν = c/λ = (331 m/s)/(0.01 m) ≈ 33 kHz. Since the range of
human hearing is only up to about 20 kHz, it seems as though all audible frequencies
would be measurable in this type of experiment.

Headstart for next week, Week 10, starting Monday 2004/11/22:
– Read Chapter 14 “The Double Slit; Multiple-slit Arrays; Diffraction Gratings” in Towne
– – Section 14-1 “Introduction”
– – Section 14-2 “The double slit”
– – Section 14-3 “Multiple-slit arrays”
– – Section 14-4 “The diffraction grating”
– Read Chapter 15 “Waves Confined to a Limited Region” in Towne, omit 15-14, 15-15
– – Section 15-1 “Introduction”
– – Section 15-2 “Transverse waves on a string segment with fixed ends”
– – Section 15-3 “Sinusoidal solutions”
– – Section 15-4 “Solutions of product form”


