
Physics 380H - Wave Theory Homework #07 - Solutions
Fall 2004 Due 12:01 PM, Monday 2004/11/08

[50 points total]

“Journal” questions:
– What physics material do you recall from your elementary school experiences (up to about age 12)?
How was it presented? What was your perception of the instructor’s attitude toward the material?
What about other non-physics sciences? Math?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. What experimental evidence of the wavelike nature of light led to the abandonment of the then
accepted corpuscular theory by Poisson? What effect revived a modified corpuscular theory
in the early 20th century due to a new theoretical framework of electromagnetic waves? Limit
your discussion to about 50 words or so. [10]

Solution: According to Towne in Section 11-7, Poisson asked Arago to demonstrate that
the shadow of a circular disc noes not have a bright spot at the centre, which is one of the
consequences of Fresnel’s theory (based on the wave ideas of Young and Huygens which did
not have widespread acceptance). Surprisingly, Arago’s results were in exact agreement with
the wave theory - there was a bright spot at the centre. In the early 20th century, a Einstein’s
theoretical model of the “Photoelectric Effect” gave rise to the idea of “photons”, within the
framework of quantum theory. Thus today we think of light as having a dual nature, both
particle-like/corpuscular and wave-like.

2. (From Towne P11-11, pg 252)A yacht club Y is located on the semicircular shoreline of a
harbour protected by a breakwater BW (see Towne, Figure 11-32). it is found that the most
damaging storms are associated with swells which come from due north and have a wavelength
of 20 ft. To give the yacht club maximum protection from these storms, it is decided to have
two openings in the breakwater at C and C ′ equidistant from the centre O. (Consistent with
the fictitious nature of the problem, simplifications should be made as desired.)

(a) What should the spacing be betwen the openings? [10]
Solution: If we assume that the size of the harbour is large enough so that we can use
the Fraunhofer approximation, we can find the intensity of the waves as a function of the
angle (measured from the centre of the arc of the harbour) via
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where k = 2π/λ. Since the waves hit the barrier head-on, there is no phase difference
between the waves coming through the two gaps, so (∆φ)0 = 0. We want the intensity



at the given angle θY = 20◦ = π/9 rad to be a minimum, so
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d ≈ 29 ft.

Thus the gaps in the breakwater should be about 29 ft apart in order to provide maximum
protection for the club.

(b) Along how much of the shoreline on either side of Y will the wave amplitude during a
storm be less than half of what it would be with only a single opening? (Take the radius
OY = 1500 ft. [10]
Solution: For this problem, I am unable to get Towne’s result of 270 ft. Calculations
based on intensity give about 250 ft, while calculations based on wave amplitude give
about 160 ft of shoreline.
Given the spacing d calculated above, we would like to find the angles θ1/2 close to
θY = 20◦ = π/9 rad where the intensity is I0/2.
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If we let c1 = 1.2094 . . . and c2 = 1.9321 . . . , then we can calculate the arc length between
the two angles via s = R∆θ via
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= 0.26647 . . . rad = 15.26 . . .◦ = 0.43422 . . . rad = 24.87 . . .◦

∆θ = θ2 − θ1 = 0.16774 . . . rad = 9.61 . . .◦

s = R∆θ = (1500 ft)(0.16774 . . . ) = 251.6 . . . ft
s ≈ 250 ft

Thus there is about 250 ft of shore including the yatch club where the wave intensity will
be less than half of what it would be with only a single opening.



If we look at the wave amplitude rather than the intensity we have that the following
expression holds, where the cos (ωt− φ̄) factor does not influence the wave amplitude,

ψ(θ) = 2A cos
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The phase difference between the two sources ∆φ in the limit of large distances R ap-
proximation is given by ∆φ = kd sin θ. Since we are interested in only the magnitude of
the amplitude, and not the sign (which is just another phase factor) we want to find the
angles where
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If we let c1 = 1.3181 . . . and c2 = 1.8234 . . . , then we can calculate the arc length between
the two angles via s = R∆θ via
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= 0.29109 . . . rad = 16.678 . . .◦ = 0.3970 . . . rad = 22.74 . . .◦

∆θ = θ2 − θ1 = 0.1059 . . . rad = 6.07 . . .◦

s = R∆θ = (1500 ft)(0.1059 . . . ) = 158.9 . . . ft
s ≈ 160 ft

Thus for about 160 ft of shore including the yatch club will have wave amplitudes less
than half of what they would be with only a single opening.



3. (From Towne P11-27, pg 256) It is desired to exhibit localized interference fringes in sodium
yellow light by forming a thin air wedge between two optical flats. The flats are 5 cm long
and the wedge is formed by inserting a think piece of paper between the flats along one edge.
How thick must the paper be if the fringes are to be 1 mm wide? Hint: you will need to
determine the optical path difference between light reflected off of the top of the triangular
air wedge and off of the bottom of the air wedge, and how that path difference is a function
of the distance from the corner, where the two flats come into contact. [10]

Solution: The wavelength of the soidum yellow light is about λ = 589 nm. The change
in optical path length difference ∆δ between adjacent fringes will be a single wavelength of
the light, so ∆δ = λ, and this will be equal to twice the change in height between these
two points, so ∆δ = λ = 2∆h. We also know that the distance between the two fringes is
l = 1 mm = 0.1 cm. Since the total length of the plate is L = 5 cm, we will have similar
triangles formed for each fringe step compared to the structure as a whole:
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The edge of the wedge and thus the paper must be about 15µm in thickness.

4. When tuning a piano, “Middle A” should be at 440 Hz. Using a Middle A tuning fork you
determine that the piano that you are working on is a little bit “sharp” and when Middle A is
played, you hear beat interference between the piano and the tuning fork of about 10 cycles
in about 7 seconds. What is the frequency that the piano is tuned to? [10]

Solution: The beat frequency is merely the difference in the frequency of the two sources
(note that the beat frequency is twice the frequency of the sinusoidal function governing the
amplitude of the resultant wave function, since squaring this wave function to get an intensity
gives an intensity with periodicity that is twice the periodicity of the wave function amplitude).
If f1 = 440Hz is the tuning fork frequency, and fb = 10/7 Hz, then

fb = |f2 − f1| =⇒ f2 = 440Hz +
10
7

Hz = 441.42857 . . . Hz ≈ 441.43 Hz.

Thus the piano is tuned to a frequency of about 441.43 Hz.

Headstart for next week, Week 08, starting Monday 2004/11/08:
– Read Chapter 12 “Continuous Distribution s of Coherent Sources; the Fraunhofer Approximation”
in Towne, omit 12-15
– – Section 12-1 “Introduction”
– – Section 12-2 “Radiation pattern from coherent sources continuously distributed along a line
segment”
– – Section 12-3 “The Fraunhofer approximation”
– – Section 12-4 “Study of the Fraunhofer pattern”
– – Section 12-5 “Vibration curve for the Fraunhofer approximation”
– – Section 12-6 “Diffraction by an extremely narrow slit”
– – Section 12-7 “Diffraction by an extremely long slit”
– – Section 12-8 “The Fraunhofer approximation applied to a rectangular distribution of coherent
point sources”
– – Section 12-9 “Diffraction by a rectangular aperture”


