
Physics 380H - Wave Theory Homework #06 - Solutions
Fall 2004 Due 12:01 PM, Monday 2004/11/01

[60 points total]

“Journal” questions:
– Approximately how much time per week are you spending on the various aspects of this course,
outside of scheduled class times? (ie: lab, assignments, non-assignment pre-reading, general study-
ing, any other categories?) About how much time do you think that you SHOULD be spending
on the various aspects of this course? Assuming that you would prefer to reduce your workload,
do you have any suggestions on how the course could be arranged to reduce the course workload
without significantly reducing the amount and depth of material covered?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Towne P1-8, pg 17) Given y(x, t) = <
{
Aei(ωt−kx)

}
, where A = Aeiθ is a complex

constant. Verify by direct substitution that this function is a solution of the one-dimensional
wave equation. What kind of wave is this? Verify that this function conforms with the
appropriate relation asserted in (Towne 1-14). [10]

∂y±
∂t

= ∓c
∂y±
∂x

(Towne 1-14)

Solution: Taking the various derivatives:

y(x, t) = <
{
Aei(ωt−kx)

}
∂y(x, t)

∂x
= <

{
−ikAei(ωt−kx)

}
= −k<

{
iAei(ωt−kx)

}
(1.1)

∂2y(x, t)
∂x2

= <
{

i2k2Aei(ωt−kx)
}

= −k2y(x, t) (1.2)

∂y(x, t)
∂t

= <
{

iωAei(ωt−kx)
}

= ω<
{

iAei(ωt−kx)
}

(1.3)

∂2y(x, t)
∂t2

= <
{

i2ω2Aei(ωt−kx)
}

= −ω2y(x, t) (1.4)

Multiplying (1.2) by c2 and setting that equal to (1.4) gives us the wave equation for ck = ω,
namely

ck = ω =⇒ ∂2y(x, t)
∂x2

=
1
c2

∂2y(x, t)
∂t2

.

y(x, t) is a transverse wave propagating in the +x direction (since it is a function of (kx−ωt)
it moves to the right). The relation (Towne 1-14) can be verified by multiplying (1.3) by c
and setting that equal to (1.1), which is again true if and only if ck = ω. So

ck = ω =⇒ ∂y(x, t)
∂x

= −c
∂y(x, t)

∂t
,

shows that the given by y(x, t) satisfies the +-wave portion of (Towne 1-14).



2. (From Towne P2-4, pg 36) If the gas filling an organ pipe is changed from air to helium, find
the change in pitch of the fundamental vibration. Express the result as a frequency ratio and
give the nearest musical interval to which this corresponds. [10]

Solution: The length of the organ pipe does not change, so the wavelength fundamental
vibration λ remains constant, while the speed of the sound c is altered since c = ν/λ.

νHe

cHe
= λ =

νair

cair
=⇒ νHe

νair
=

cHe

cair
=

(972)
(331)

= 2.9365 · · · ≈ 3.

So the frequency of the fundamental vibration increases by a factor of about three. The
musical scale is generally based on factors of two, with each factor of two being one octave.

From http://www.proav.de/music/music theory.html we have: “Today we use the equal tem-
perament, This system is based on the twelfth root of 2. The ratio of frequencies for each
half-tone is equal to 21/12. Twelve half-tones give a doubling of frequency and all of these
half-tones are exactly the same. The main drawback to this equal temperament is that all
major thirds are quite a bit off from where they ought to be, roughly 14% of a half-tone.”

Taking the log2 of our result gives us log2 2.9365 . . . = 1.554125, which is about one and a half
octave, or one octave and about 6.6 half-steps or half-tones. Equivalently, one could look at
one half of the calculated value: 1.46827 . . . which is more than six half-steps and less than
seven half-steps.

From the above reference we see that the ”nearest musical interval” is nineteen half-steps
which is a ”perfect 12th == perfect 5th (one octave)”

3. (From Towne P4-14, pg 82) The fundamental vibration of a viloin string is a standing wave hav-
ing nodes at the two fixed ends, and is described by the fundtion y(x, t) = A sin (kx) cos (ωt),
where k = π/l, l being the length of the string. Find the total instantaneous kinetic and
potential energies (integrated over the length of the string) and show that their sum is con-
stant. [10]

Solution: To calculate the kinetic energy density and potential energy density (that is per
unit length) we will need to know the derivatives with respect to t and with respect to x.
They are:

εk =
σ

2

(
∂y

∂t

)2 ∂y(x, t)
∂t

= −ωA sin (kx) sin (ωt)

εp =
T

2

(
∂y

∂x

)2 ∂y(x, t)
∂x

= kA cos (kx) cos (ωt)

Integrating over the length of the string we have:

Ek =
∫ l

0
εk dx =

∫ l

0

σ

2

(
∂y

∂t

)2

dx =
σω2A2

2
sin2 (ωt)

∫ l

0
sin2 (kx) dx

Ep =
∫ l

0
εp dx =

∫ l

0

T

2

(
∂y

∂x

)2

dx =
Tk2A2

2
cos2 (ωt)

∫ l

0
cos2 (kx) dx

Making the substitution of u = kx and du = k dx with kl = π, we have:

Ek =
σω2A2

2k
sin2 (ωt)

∫ π

0
sin2 (u) du =

σω2A2

2k
sin2 (ωt)

[
u

2
− sin (2u)

4

]π

0

=
πσω2A2

4k
sin2 (ωt)

Ep =
Tk2A2

2k
cos2 (ωt)

∫ π

0
cos2 (u) du =

Tk2A2

2k
cos2 (ωt)

[
u

2
+

sin (2u)
4

]π

0

=
πTk2A2

4k
cos2 (ωt)

http://www.proav.de/music/music_theory.html


We also know that the wave speed c = ω/k is related to the mass density σ and the string
tension T by σω2 = k2T , so

Etot = Ek + Ep =
πTk2A2

4k
sin2 (ωt) +

πTk2A2

4k
cos2 (ωt)

=
πTk2A2

4k

(
sin2 (ωt) + cos2 (ωt)

)
=

πTkA2

4
=

lTk2A2

4
=

πσω2A2

4k
=

lσω2A2

4
.

Thus the total energy (kinetic plus potential) integrated over the length of the string is a
constant.

4. What surprising consequence did Maxwell’s equations provide? How are the permittivity and
permeability of free space related to light? Limit your discussion to about 50 words or so. [10]

Solution: Combining Maxwell’s equations in the manner of Towne Chapter 6 gives the result
that in free space they permit solutions which are travelling waves of speed c2 = 1/µε. The
surprising thing is that the speed of these waves was the same as the measured speed of light.
Neither the permittivity nor permeability parameters had ever been associated in any way with
light, nor for that matter had any electromagnetic effects ever been associated with optics.
Maxwell’s equations not only unite electric and magnetic effects with each other, they also in
a sense encompass the entire field of optics/photonics as being a sub-field of electromagnetism.

5. Why does monochromatic “natural light” not exhibit the phenomenon of polarization while
all sinusoidal waves are intrinsically polarized? Limit your discussion to about 50 words or
so. [10]

Solution: As discussed in Towne in section 7.7, “natural light” is generally not polarized, even
though any light source can be thought of as producing various combinations of sinusoidal
waves, which certainly are polarized. There are two general arguments to “explain” this
fact. One is based on the symmetries and preferred directions associated with a variety of
light sources. Since most natural sources do not have any particular structure that would
give rise to a preferred direction, each bit of radiation would be expected to have a random
polarization, and since the waves do not influence each other, the overall effect would be to
have non-polarized light as a result. If think of the various individual sources of light (each
atomic oscillator, etc.) that make up any natural light source to be completely uncorrelated
in phase, we get the result that the resulting sum of their electromagnetic waves can have a
drifting phase, even if it has a relatively well defined frequency/wavelength. Since the typical
periods of oscillation of a visible light wave are so very small, we could have overall phase
changes that are very “slow” in comparison to the period of oscillation, and yet still be much
too quick for any but the most sensitive instruments to detect.



6. (From Towne P7-14, pg 133) The channeled spectrum obtained by reflection from a thin film
surrounded by air contains only two dark bands, centered at 4500 Å and 6000 Å. What is the
optical thickness of the film? (“Optical thickness” is a term used for the product of the index
of refraction and the geometrical thickness. Neglect the dependence of index of refraction on
wavelength.) [10]

Solution: Since the film has an identical substance (air) on each side of it, we know that
reflection from one surface will result in a phase change of π, while reflection from the other
side of the film will result in no phase change. We do not know which surface has the phase
change for at least in principle, the film could have a lower index of refraction than the air,
even though that is unlikely. Thus if the total optical path difference δ = 2nt (t is the physical
thickness of the film and n is the relative index of refraction between the film and air. Note
that nt is the “optical thickness” that we are trying to find.) between light reflecting off
of the front surface versus light reflecting off of the back surface is an integral number of
wavelengths of the light, there will be destructive interference and we will observe a dark
band. Since we observe destructive interference for the two given wavelengths, but no other
wavelengths between these two, the integer corresponding with one wavelength of light must
be one greater (or lesser) than the integer corresponding with the other wavelength.

Given λ1 = 4500 Å and λ2 = 6000 Å and m1 = m2 + 1, we have:

δ = 2nt = m1λ1 = m2λ2 =⇒ m1

m2
=

λ2

λ1
=

4
5

=⇒ m1 = 4, m2 = 5

∴ nt =
m1λ1

2
=

m2λ2

2
= 9000 Å.

The optical thickness of the film is nt = 9000 Å.

Headstart for next week, Week 07, starting Monday 2004/11/01:
– Read Chapter 11 “Interference Pattern from a Pair of Point Sources” in Towne, omit 11-8 through
11-15
– – Section 11-1 “Introduction”
– – Section 11-2 “Sources close together compared with a wavelength; the dipole source”
– – Section 11-3 “Various interference patters for d ∼ λ”
– – Section 11-4 “Total power radiated from a pair of point sources”
– – Section 11-5 “The phenomenon of beats”
– – Section 11-6 “Interference patterns when kd � 1”
– – Section 11-7 “Young’s experiment”


