
Physics 380H - Wave Theory Homework #05 - Solutions
Fall 2004 Due 12:01 PM, Monday 2004/10/18

[50 points total]

“Journal” questions:
– Have you ever noticed any physics (or science or math or technology if you cannot recall a physics
example) issue/idea/result presented incorrectly in the general media or popular press? In a non-
science course? What was it? What, if anything, should be done about this type of problem? Is it
a problem? Why or why not?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Towne P4-4, pg 81) Calculate the rms values of p, ξ, ξ̇, and s in air at standard
temperature and pressure for a sinusoidal wave of frequency ν = 1000 sec−1 and average
intensity ı̄ = 10−12 W/m2 [10]

Solution: For air at one atmosphere and 0◦C, Z = 429 kg/m2s. Also

ı̄ = prmsξ̇rms = Zξ̇2
rms =

p2
rms

Z
.

=⇒ p2
rms = Zı̄ ξ̇2

rms =
ı̄

Z

prms =
√

Zı̄ ξ̇rms =

√
ı̄

Z

=
√

(429 kg/m2s)(10−12 W/m2) =

√
(10−12 W/m2)
(429 kg/m2s)

=
√

(4.29× 10−10 W · kg/m4s) =
√

(2.33100× 10−15 W · s/kg)

= (2.071231 . . .× 10−5 N/m2) = (4.8280 . . .× 10−8 m/s)

prms ≈ (2.07× 10−5 N/m2) ξ̇rms ≈ (4.83× 10−8 m/s)

The value for Ba for air can be calculated by Ba = ρ0c
2 and since ρ0 = 1.293 kg/m3 and

c = 331m/s for air we have

prms = Basrms =⇒ srms =
prms

Ba
=

prms

ρ0c2
=
√

Zı̄

ρ0c2

=

√
(429 kg/m2s)(10−12 W/m2)
(1.293 kg/m3)(331m/s)2

=

√
(429 kg/m2s)(10−12 W/m2)
(1.293 kg/m3)(331m/s)2

= (1.46209 . . .× 10−10)

srms ≈ (1.46× 10−10)

In order to calculate ξ̇rms, we need to know the relationship between the amplitude of ξ and ξ̇
for a sinusoidal wave, since the rms values will have the same relationship. We can write ξ as

ξ = ξm sin (kx− ωt) =⇒ ξ̇ =
∂ξ

∂t
= ξm

∂

∂t
sin (kx− ωt)

= −ξmω cos (kx− ωt)

= ξ̇m cos (kx− ωt)

∴
∣∣∣ξ̇m

∣∣∣ = |ξmω| =⇒ ξ̇rms = ξrmsω



We know however that ω = 2πν, so

∴ ξrms =
ξ̇rms

2πν
=

1
2πν

√
ı̄

Z

=
1

2π(1000 s−1)

√
(10−12 W/m2)
(429 kg/m2s)

= (7.68407 . . .× 10−12 m)

ξrms ≈ (7.68× 10−12 m)

2. (From Towne P4-6. pg 82)Assume that the displacement amplitude of a vibrating piston is
independent of the medium in which it is operating.

(a) Compare the power outputs of the piston in water and air. [5]
Solution: The radiative intensity is what we are interested in here, since that will give
us a measure of the power per unit area. The average radiative intensity is a function of
pm and ξ̇m, the pressure and displacement velocity amplitudes by way of:

ı̄ =
pmξ̇m

2
=

Zξ̇2
m

2
=

p2
m

2Z
.

We could use any of these expressions in addition to the knowledge that ξm is the same
for water and air, and also the assumption that the piston frequency is the same in
both water and air. We want to find the ratio of ı̄water and ı̄air, so we will need to find
expressions for ξ̇m and/or pm in terms of the physical parameters of the system, with the
knowledge that Ba = ρ0c

2 = Zc. For a sinusoidal wave we have

ξ = ξm sin (kx− ωt) =⇒ ξ̇ =
∂ξ

∂t
= ξm

∂

∂t
sin (kx− ωt)

= −ξmω cos (kx− ωt)

= ξ̇m cos (kx− ωt)

∴
∣∣∣ξ̇m

∣∣∣ = |ξmω| ,

in both water and air, thus we can calculate the ratio of interest by

ı̄water

ı̄air
=

Zwaterξ̇
2
m

2
2

Zairξ̇2
m

=
Zwater

Zair
=

ρwatercwater

ρaircair
= Zwa =

1
Zaw

=
(1480000)

(429)
=

(998)(1483)
(1.293)(331)

≈ 3450.

Thus the piston delivers about 3450 times as much power to the water than to the air.



(b) If the piston is under water and parallel to a water-air surface, compare the intensity
of the wave transmitted into the air with the intensity of the wave obtained when the
piston is operating directly in air. [5]
Solution: Here we want to compare ı̄air with the intensity of a wave that starts in water
and is then transmitted into the air, which we could call ı̄water→air. To find ı̄water→air

we need to know the transmission coefficient Ti between water and air. Since Zair is so
much smaller than Zwater, the relative impedance will be much less than one, so we can
use the approximations

Zaw =
Zair

Zwater
≈ 1

3450
=⇒ Tp ≈ 2− 2Zaw Tξ̇ ≈ 2Zaw

Ti = TpTξ̇

≈ (2− 2Zaw)(2Zaw)

= 4Zaw − 4Z2
aw

≈ 4Zaw

So the intensity ı̄water→air can be calculated in terms of the results of the first part of the
problem

ı̄water→air = ı̄waterTi

= ı̄water4Zaw

=
ı̄air
Zaw

4Zaw

= 4ı̄air

Thus while the transmitted wave in the air is 4Zaw ≈ 0.00116 of the wave produced by
the piston in the water, it is still four times greater than the wave that would have been
produced by the piston in air.



3. (From Towne P4-9, pg 82) A room having a volume of 1000m3 is filled with a sound wave of
intensity level 60 db.

(a) Estimate the total energy present. [5]
Solution: The intensity level in decibels is given, so we can calculate the sound intensity
by

∆ = 10 log10

(
i

i0

)
=⇒ ∆

10
= log10

(
i

i0

)
=⇒ i

i0
= 10

∆
10

∴ i = i0

(
10

∆
10

)
= 10−12 W/m2

(
10

60
10

)
= 10−6 W/m2.

The potential and kinetic energy densities are given by

wtot = wkin + wpot =
1
2
ρ0ξ̇

2 +
p2

2Ba

where for a progressive sinusoidal wave, the potential and kinetic terms are equal. Since
we also know the intensity relationships for such a wave, we can for example calculate p2

and ξ̇2 in terms of i

i = pξ̇ = Zξ̇2 =
p2

Z
=⇒ p2 = Zi, ξ̇2 =

i

Z

wtot =
1
2
ρ0ξ̇

2 +
p2

2Ba

= ρ0
i

2Z
+

Zi

2Ba
=

iρ0

2ρ0c
+

Zi

2Zc

=
i

2c
+

i

2c
=

i

c

Since this is an energy density, the total energy is calculated by multiplying by the
volume:

Etot = V wtot =
V i

c

=
(1000 m3)(10−6 W/m2)

(331 m/s)
= 3.0211× 10−6 J

≈ 3× 10−6 J

(b) At what intensity level would a total energy of 1 calorie be achieved? [5]
Solution: For a given total energy Etot = 1 cal = 4.186 J we have:

Etot =
V i

c
=⇒ i =

Etotc

V

∆ = 10 log10

(
i

i0

)
= 10 log10

(
Etotc

V i0

)
= 10 log10

(
(4.186 J)(331 m/s)

(1000 m3)(10−12 W/m2)

)
= 10 log10

(
1.3855× 1012

)
≈ 121.4 db

So 1 calorie of sound energy in a room of this size is about 121 db loud, which is well
into the pain levels for unprotected ears.



4. (From Towne P6-4, pg 109) Show that Maxwell’s equations permit a solution in which all the
components of E and H vanish identically everywhere except for: [10]

(a) Ez and Hy

(b) Ex and Hz

Describe the situation represented by each of these solutions.

Solution: This follows directly from the procedure used in Towne, Chapter 6. Maxwell’s
equations in free space are:
∇ ·E = 0, ∇ ·H = 0, ∇×E = −µ(∂H/∂t), ∇×H = ε(∂E/∂t).

If all the components of E and H vanish identically everywhere except for Ez and Hy,
Maxwell’s equations become

∂Ez

∂z
= 0 (4.01)

∂Hy

∂y
= 0 (4.02)

∂Ez

∂y
ı̂− ∂Ez

∂x
̂ = −µ

∂Hy

∂t
̂ (4.03)

−∂Hy

∂z
ı̂ +

∂Hy

∂x
k̂ = ε

∂Ez

∂t
k̂. (4.04)

Taking the separate components of (4.03) and (4.04) we get

∂Ez

∂y
= 0 (4.05)

∂Ez

∂x
= µ

∂Hy

∂t
(4.06)

∂Hy

∂z
= 0 (4.07)

∂Hy

∂x
= ε

∂Ez

∂t
. (4.08)

The equations (4.01), (4.02), (4.05) and (4.07) will only be satisfied if Ez and Hy are functions
of at most x and t. If we differentiate (4.06) with respect to x and (4.08) with respect to t we
get

∂2Ez

∂x2
= µ

∂2Hy

∂x∂t
(4.09)

∂2Hy

∂t∂x
= ε

∂2Ez

∂t2
. (4.10)

Since the order of differentiating (t or x) does not matter, we can put (4.10) into (4.09) to get

∂2Ez

∂x2
= µε

∂2Ez

∂t2
. (4.11)

Similarly, we can differentiate (4.06) with respect to t and (4.08) with respect to x and put
the results together to arrive at

∂2Ez

∂t∂x
= µ

∂2Hy

∂t2

∂2Hy

∂x2
= ε

∂2Ez

∂x∂t

=⇒ ∂2Hy

∂x2
= εµ

∂2Hy

∂t2
. (4.12)



Equations (4.11) and (4.12) are wave equations with c2 = 1/µε and we have shown that
Maxwell’s equations do permit a solution in which all the components of E and H vanish
identically everywhere except for Ez(x, t) and Hy(x, t).

This situation is one where the electric and magnetic waves propagate in either direction
along the |k̂× ̂| = ı̂, or x, direction with the electric field only having z components, and the
magnetic field only having y components. The direction of propagation not only follows from
the direction of S = E ×H, but also from the fact that both functions are only functions of
only x and t. Without knowing the functional form of the x and t dependance for E and H,
we cannot tell if the waves are going in the positive, negative, or both directions.

If all the components of E and H vanish identically everywhere except for Ex and Hz, we
follow the same procedure and, Maxwell’s equations become

∂Ex

∂x
= 0 (4.13)

∂Hz

∂y
= 0 (4.14)

∂Ex

∂z
̂− ∂Ex

∂y
k̂ = −µ

∂Hz

∂t
k̂ (4.15)

∂Hz

∂y
ı̂− ∂Hz

∂x
̂ = ε

∂Ex

∂t
ı̂. (4.16)

Taking the separate components of (4.15) and (4.16) we get

∂Ex

∂z
= 0 (4.17)

∂Ex

∂y
= µ

∂Hz

∂t
(4.18)

∂Hz

∂x
= 0 (4.19)

∂Hz

∂y
= ε

∂Ex

∂t
. (4.20)

The equations (4.13), (4.14), (4.17) and (4.19) will only be satisfied if Ex and Hz are functions
of at most y and t. If we differentiate (4.18) with respect to y and (4.20) with respect to t we
get

∂2Ex

∂y2
= µ

∂2Hz

∂y∂t
(4.21)

∂2Hz

∂t∂y
= ε

∂2Ex

∂t2
. (4.22)

Since the order of differentiating (t or y) does not matter, we can put (4.22) into (4.21) to get

∂2Ex

∂y2
= µε

∂2Ex

∂t2
. (4.23)

Similarly, we can differentiate (4.18) with respect to t and (4.20) with respect to y and put
the results together to arrive at

∂2Ex

∂t∂x
= µ

∂2Hz

∂t2

∂2Hz

∂y2
= ε

∂2Ex

∂y∂t

=⇒ ∂2Hz

∂y2
= εµ

∂2Hz

∂t2
. (4.24)



Equations (4.23) and (4.24) are wave equations with c2 = 1/µε and we have shown that
Maxwell’s equations do permit a solution in which all the components of E and H vanish
identically everywhere except for Ex(y, t) and Hz(y, t).

This situation is one where the electric and magnetic waves propagate in either direction
along the |̂ı× k̂| = ̂, or y, direction with the electric field only having x components, and the
magnetic field only having z components. The direction of propagation not only follows from
the direction of S = E ×H, but also from the fact that both functions are only functions of
only y and t. Without knowing the functional form of the y and t dependance for E and H,
we cannot tell if the waves are going in the positive, negative, or both directions.

5. (From Towne P7-4, pg 131) In optical systems which involve lenses, a loss of intensity is
encountered due to reflection at the lens surfaces. Assume a relative index of refraction of 1.5
and calculate the percent loss in intensity which occurs at each passage from air to glass or
glass to air. (Note: The theory of image formation by a lens assumes that all rays are nearly
parallel to the axis of the lens. Consequently it is justified to assume normal incidence in this
problem.) [10]

Solution: We are given n12 = 1.5, for normal incidence we know that

RE =
1− n12

1 + n12

=
1− 1.5
1 + 1.5

=
−0.5
2.5

= −0.2.

This is the reflection coefficient for the amplitude of the electric field. Really we want to know
RS , the reflection coefficient for the intensity (derived in Towne from the isomorphism to the
acoustic waves), namely

RS = −R2
E = −

(
1− n12

1 + n12

)2

= −(−0.2)2 = −0.4

Since we are interested in only the amplitude (not the phase) we can take the absolute value
|RS | to find that the percentage loss in intensity due to reflection is 4% at each interface.

Headstart for next week, Week 06, starting Monday 2004/10/18:
– Mid term test Friday October 22, up to and including material from Chapter 6.
– Read Chapter 7 “Analytical Description of Polarized Electromagnetic Plane Waves” in Towne
– – Section 7-6 “Types of polarization”
– – Section 7-7 “Natural light”
– – Section 7-8 “Energy relations for the general progressive plane wave”
– – Section 7-9 “Reflections by a thin film”


