
Physics 380H - Wave Theory Homework #04 - Solutions
Fall 2004 Due 12:01 PM, Tuesday 2004/10/12

[30 points total]

“Journal” questions:
– Give an example of a time you made use of physics knowledge you gained from a physics course,
outside of schoolwork. What physics phenomena have you noticed outside of the classroom? Have
you noticed or made use of waves outside of class? In what context?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Towne P3-4, pg 60) A piston is located at x = 0, adjacent to a fluid extending through-
out x > 0. The piston is initially at rest, and there is no disturbance in the fluid. At t = 0
the piston starts to move with constant negative acceleration: B(t) = −at2/2. Describe the
condition of the fluid at some later time. [10]

Solution: Before the piston starts to move, the situation looks like this:

Piston adjacent to fluid, t ≤ 0.
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Piston adjacent to fluid, t > 0.
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x = 0 x = ct-
vwave = c

Piston
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Undisturbed
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For t > 0 the fluid will begin to accelerate to the left, into the x < 0 region. Following the
work of Towne in Section 3-3, the boundary condition is that the fluid adjacent to the piston
must stay in contact with the piston, so ξ(0, t) = B(t) (which assumes that cavitation does
not develop). (Note that we are using functions of the form (t−x/c) and (t+x/c) rather than
(x− ct) and (x + ct) because it makes the algebra a bit simpler.) Since there are no reflection
surfaces for x > 0 and no other possible sources of waves coming from the right, there should
be no -wave present, so the general form of ξ is given by the standard form with g = 0:

ξ(x, t) = f(t− x/c) + g(t + x/c)
= f(t− x/c).



The boundary condition gives
B(t) = ξ(0, t) = f(t),

from which it follows that

ξ(x, t) = f(t− x/c) = B(t− x/c).

Thus for the case under consideration

ξ(x, t) = B(t− x/c) =
−a

2
(t− x/c)2

for x ≤ ct and ξ(x, t) = 0 for x > ct. Note that even though each fluid particle moves to the
left, the wave (ie. the disturbance) moves to the right.

At some later time t, the fluid to the right of position x > ct will still be undisturbed, while
the fluid to the left of this point will be moving to the left at speed given by

ξ̇(x, t) =
∂ξ

∂t
(x, t) = −a (t− x/c) ,

and the fluid acceleration is given by

ξ̈(x, t) =
{
−a, x < ct,
0, ct ≤ x.

Since p(x, t) = Zξ̇(x, t), the pressure wave is given by:

p(x, t) = Zξ̇(x, t) = −Za (t− x/c) ,

for x ≤ ct and of course p(x, t) = 0 for x > ct.

We should also note that while the acoustic approximations will hold provided a is small
enough, eventually the speed of the piston at will be greater than the speed of wave propagation
c and one might think that the acoustic approximation will no longer hold. However, since
the fluid is moved along with the piston, locally there should be no problem with at getting
very large, as long as no cavitation occurs.



2. (From Towne P3-9, pg 60) Start with the boundary condition of a free surface, p(0, t) = 0,
and apply this directly (in a manner similar to the method of Section 3-2) to deduce p(x, t)
and ξ̇(x, t). [10]

Solution: The free surface boundary condition p(0, t) = 0 can be combined with the wave
equation for p(x, t) to give us

p(x, t) = f(t− x/c) + g(t + x/c) =⇒ p(0, t) = 0 = f(t) + g(t) =⇒ g(t) = −f(t).

This tells us that the reflected (pressure) wave is inverted from the incident wave, just as the
displacement wave behaves for a rigid surface. Since we want p to be zero (a node) at the
surface we choose for the sinusoidal incident wave f(t) = pm cos (ωt) and we get:

p(x, t) = f(t− x/c) + g(t + x/c)
= f(t− x/c)− f(t + x/c)
= pm cos (ω(t− x/c))− pm cos (ω(t + x/c))
= pm cos (ωt− kx)− pm cos (ωt + kx)
= 2pm sin (kx) sin (ωt).

Since p(x, t) = −Ba
∂ξ
∂x , the above expression for p(x, t) allows us to calculate expressions for

ξ(x, t) and ξ̇(x, t), by integrating and differentiating, thus

ξ(x, t) =
2pm

Bak
cos (kx) sin (ωt) ξ̇(x, t) =

2pmω

Bak
cos (kx) cos (ωt)

= ξm cos (kx) sin (ωt) =
2pmc

Ba
cos (kx) cos (ωt)

= ξ̇m cos (kx) cos(ωt).

So there are displacement nodes at half-wavelength intervals, with the first one being at one
quarter wavelength. At the surface, the amplitude of the displacement is a maximum.

3. (From Towne P4-1, pg 81) Find the exact expression for the potential energy density Wpot of
an ideal gas. Show that this reduces to the correct form when the acoustic approximation is
made. (Note: Since the desired quantity contains second-order terms in s, a more accurate
expression than s = −∂ξ/∂x is required to show the equivalence.) [10]

Solution: The potential energy (per unit volume) is given by

Wpot = ρ0

∫ ρ

ρ0

Pa(ρ)
dρ

ρ2
(see Towne pg 64),

and the equation of state for an ideal gas is

Pa(ρ) = P0

(
ρ

ρ0

)γ

(see Towne pg 25).



We put these two together and we get

Wpot = ρ0

∫ ρ

ρ0

P0

(
ρ

ρ0

)γ dρ

ρ2

=
ρ0P0

ργ
0

∫ ρ

ρ0

ργ dρ

ρ2

=
P0

ρ
(γ−1)
0

∫ ρ

ρ0

ρ(γ−2)dρ

=
P0

ρ
(γ−1)
0

∫ ρ

ρ0

ρ(γ−2)dρ

=
P0

ρ
(γ−1)
0

[
ρ(γ−1)

(γ − 1)

]ρ

ρ0

=
P0

(γ − 1)ρ(γ−1)
0

[
ρ(γ−1)

]ρ
ρ0

=
P0

(γ − 1)ρ(γ−1)
0

[
ρ(γ−1) − ρ

(γ−1)
0

]
Wpot =

P0

(γ − 1)

[(
ρ

ρ0

)(γ−1)

− 1

]

We would like to show that this reduces to Towne’s 4-12 from pg 67, namely

Wpot = −P0
∂ξ

∂x
+
Bas

2

2
= −P0

∂ξ

∂x
+

p2

2Ba

I think that we need to expand the expression for ρ to encompass more than just the linear
term, however I cannot seem to go anywhere further with that idea... I cannot figure out what
to do with those pesky exponents containing (γ − 1)...

ρ = ρ0

(
1 +

∂ξ

∂x

)−1

= ρ0

(
1−

(
∂ξ

∂x

)
+
(

∂ξ

∂x

)2

−
(

∂ξ

∂x

)3

+ · · ·

)

ρ2 = ρ2
0

(
1 +

∂ξ

∂x

)−2

= ρ2
0

(
1− 2

(
∂ξ

∂x

)
+ 3

(
∂ξ

∂x

)2

− 4
(

∂ξ

∂x

)3

+ · · ·

)

s =
ρ− ρ0

ρ0
= −

(
∂ξ

∂x

)
+
(

∂ξ

∂x

)2

−
(

∂ξ

∂x

)3

+ · · ·

s =
ρ− ρ0

ρ0
=⇒ ρ = ρ0(s + 1)

Wpot =
P0

(γ − 1)

[(
ρ

ρ0

)(γ−1)

− 1

]

=
P0

(γ − 1)

[(
ρ0(s + 1)

ρ0

)(γ−1)

− 1

]

=
P0

(γ − 1)

[
(s + 1)(γ−1) − 1

]



Wpot =
P0

(γ − 1)

[(
ρ

ρ0

)(γ−1)

− 1

]

=
P0

(γ − 1)


ρ0

(
1 + ∂ξ

∂x

)−1

ρ0


(γ−1)

− 1


=

P0

(γ − 1)

((1 +
∂ξ

∂x

)−1
)(γ−1)

− 1


≈ P0

(γ − 1)

(1−
(

∂ξ

∂x

)
+
(

∂ξ

∂x

)2
)(γ−1)

− 1



Headstart for next week, Week 05, starting Tuesday 2004/10/12:
– Read Chapter 4 “Energy in a Sound Wave; Isomorphisms” in Towne, omit 4-7
– – Section 4-8 “Interference between superposed waves”
– – Section 4-9 “Measurement of intensity in decibels”
– – Section 4-10 “Energy definitions for transverse waves on a string”
– – Section 4-11 “Energy relations for transverse waves on a string; isomorphisms”
– – Section 4-12 “Bountry value problems for transverse waves on a string”
– Read Chapter 6 “The Electromagnetic Plane Wave” in Towne, omit 6-4, 6-5
– – Section 6-1 “Maxwell’s equations”
– – Section 6-2 “A solution to Maxwell’s equations for a special situation”
– – Section 6-3 “Implications of the electromagnetic theory of light”
– – Section 6-6 “A linearly polarized transverse plane wave”
– Read Chapter 7 “Analytical Description of Polarized Electromagnetic Plane Waves” in Towne
– – Section 7-1 “Introduction”
– – Section 7-2 “More complete description of the linearly polarized sinusoidal plane wave”
– – Section 7-3 “Reflection from a dielectric surface obtained by appeal to an isomorphism”
– – Section 7-4 “Reflection from a perfect conductor; direct evidence of standing waves”
– – Section 7-5 “Consideration of a more general sinusoidal plane wave”


