Physics 380H - Wave Theory
Fall 2004

Homework \#01 - Solutions
Due 12:01 PM, Monday 2004/09/20
[35 points total]
"Journal" questions:

- What are your goals for the course? What are your expectations for the course?
- Any comments about this week's activities? Course content? Assignment? Lab?

1. Send me (jbeda@trentu.ca) an e-mail message from your trentu.ca account, with a subject of "380H-HW-01"
Solution: Send the email message.
2. Sign onto WebCT and post a message in the discussion forum "General social discussions". [5]

Solution: Post the WebCT message.
3. Put your name and email address and phone number inside your texts and on your calculator and anything else you might misplace - it will not prevent theft, but it will allow anyone who finds your stuff to have a chance of returning it.
Solution: Break out the pen/pencil and inscribe.
4. For an open flask of volume V and neck length l, with a cross sectional area A, containing air of density ρ, vibrating as sound in the neck, the equation for SHM of the air is:

$$
\begin{equation*}
\rho A l \ddot{x}+\frac{\gamma \rho A^{2}}{V} x=0 . \tag{5}
\end{equation*}
$$

What is the angular frequency ω of the sound?
Solution: The general form of the equation for SHM is:

$$
\ddot{x}=-\omega^{2} x,
$$

so rewriting the given equation gives:

$$
\ddot{x}=-\frac{\gamma \rho A^{2}}{\rho A l V} x=-\frac{\gamma A}{l V} x,
$$

thus

$$
\omega=\sqrt{\frac{\gamma A}{l V}}
$$

The units of ω are $\operatorname{rad} \sec ^{-1}$.
5. For a small object of mass m, swinging on a string of length l, show that the period of oscillation is

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

by applying Newton's laws to arrive at the SHM equation. What approximation must be made?
Solution: The force in the direction of motion (along the arc of the swing) is the component of the force of gravity in that direction:

$$
F=-m g \sin \theta .
$$

From Newton's Law, the force is related to the acceleration by:

$$
F=m a=m \frac{\mathrm{~d}^{2} s}{\mathrm{~d} t^{2}}
$$

Additionally, the arc length s is related to the angle θ by

$$
s=l \theta, \frac{\mathrm{~d}^{2} s}{\mathrm{~d} t^{2}}=l \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}} .
$$

Putting them together gives us:

$$
\begin{gathered}
-m g \sin \theta=m l \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}} \\
-g \sin \theta=l \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}} \\
\frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}}=\frac{g}{l} \sin \theta
\end{gathered}
$$

In order for this to be SHM, we must have that $\sin \theta=\theta$. Fortunately, for small angles this is a fairly good approximation, so with this assumption we have:

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}=\frac{g}{l} \theta .
$$

Thus we have

$$
\omega^{2}=\frac{g}{l},
$$

which gives us

$$
\omega=\sqrt{\frac{g}{l}} .
$$

Since the period T is related to the angular frequency by

$$
T=\frac{2 \pi}{\omega}
$$

we have

$$
T=\frac{2 \pi}{\sqrt{\frac{g}{l}}}=2 \pi \sqrt{\frac{l}{g}},
$$

with the approximation that $\sin \theta \approx \theta$.
6. (From Towne P1-1. pg 17) Which of the following are solutions to the one-dimensional wave equation for transverse waves on a string? Why or why not?
a) $x^{2}-2 c x t+c^{2} t^{2}$
b) $10\left(x^{2}-c^{2} t^{2}\right)$
c) $\sigma x^{2}+T t^{2}$
d) $\sqrt[3]{\sin \left[(x-c t)^{3}\right]}$
e) $2 x-3 c t$
f) $10(\sin x)(\cos c t)$

Solution: Direct substitution into the one-dimensional wave equation can verify that a particular function is a solution. Alternatively if the function is of the form $f(x-c t)+g(x+c t)$, it is a solution. Thus (a), (c), (d), (e), and (f) are all solutions to the one-dimensional wave equation, while (b) is not.

Headstart for next week, Week 02, starting Monday 2004/09/20:

- Read Chapter 1 "Waves" in "Simple Nature" by Crowell
- Review the use of complex numbers and sinusoidal functions, Towne, Appendix I
- Read Chapter 1 "Transverse Waves on a String" in "Wave Phenomena" by Towne
- - Section 1-1 "Introduction"
- - Section 1-2 "Derivation of the wave equation"
- - Section 1-3 "Solution of the one-dimensional wave equation"
- - Section 1-4 "Wave propagation velocity on a string"
- - Section 1-5 "The most general solution to the one-dimensional wave equation"
- - Section 1-6 "Kinematics associated with the waveform"
- - Section 1-7 "Description of a sinusoidal progressive wave"
- - Section 1-8 "Initial conditions applied to the case of a string of infinite length"
- Read Chapter 2 "The Acoustic Plane Wave" in "Wave Phenomena" by Towne, omit 2-6
- - Section 2-1 "Definition of the variables"
- - Section 2-2 "Derivation of the wave equation"
- - Section 2-3"The velocity of sound"

