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1. The wave function Ψ(x, t) = A sin (kx+ ωt) describes a particle moving in the positive x
direction. [2]

(a) True (b) False

2. An electron is confined to one-dimensional box of width L and is in its ground state. A proton
is confined in another one-dimensional box also of width L also in its ground state. The wave
functions have the same wavelength. [2]

(a) True (b) False

3. Which of the following is NOT a valid quantum mechanical wave function? [3]

(a) A (b) B (c) C

4. Consider the n = 2 state for the particle confined to an infinite square well as shown.

The particle is most likely to be found: [3]

(a) in the right half of the box.

(b) in the left half of the box.

(c) with equal probability in the left and right halves of the box.

5. A certain blackbody radiates at a temperature of 5× 104 ◦K. What area of radiating surface
is required so that the radiated power is equal to 4× 1012 W, approximately the power usage
of humanity? [5]

Solution: We need to find the radiated intensity, and use that to find the area:

RT = σT 4 =
P

A

A =
P

σT 4

=
(4× 1012 W)

(5.670400× 10−8 W/m2◦K4)(5× 104 ◦K)4

= 11.286 . . . Wm2

≈ 11.3 Wm2.

An area of about 11.3 Wm2 would be needed to radiate a power of 4× 1012 W.



6. A region of space has a potential step such that particles have a wave function given by

Ψ(x, t) =


5a√

2
ei(k1x−Et/~) +

3a√
2
ei(−k1x−Et/~), x < 0,

8a√
2
ei(k2x−Et/~), x > 0.

The incident particles, initially at x� 0, are initially travelling in the positive x direction.

(a) What fraction of the incident particles will be reflected? [5]
Solution: The given solution matches the format we have used in the course with wave
amplitudes of A, B, and C. The reflection amplitude R will give us the fraction of
incident particles reflected:
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Of the incident particles, 36% or 9/25 of them will be reflected.

(b) What is k2/k1? [5]
Solution: Since 9/25 of the incident particles will be reflected, 16/25 or 64% will be
transmitted. Using the relationship for the transmission coefficient T we have
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Alternatively, one could use the continuity of the first derivative of the eigenfunction at
x = 0 to get [
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.



7. In a photoelectric effect experiment on a certain metal, it is observed that incident light of
wavelength 413 nm causes electrons to be ejected from the metal’s surface with a maximum
kinetic energy of 3.2×10−19 J. What is the longest wavelength of light that will eject electrons
from this metal? [5]

Solution: The photon has energy of hν = hc/λ, so the kinetic energy is related to the work
function of the material by

K = hν − w0

=
hc

λ
− w0

w0 =
hc

λ
−K

=
(6.626068× 10−34 J · s)(2.99792458× 108 m/s)

(413 nm)
− (3.2× 10−19 J)

= (4.8098× 10−19 J)− (3.2× 10−19 J)

w0 = 1.6098× 10−19 J

The longest wavelength will occur when the kenetic energy of the emitted electron is a mini-
mum, zero.

0 = hνmin − w0

=
hc

λmax
− w0

w0 =
hc

λmax

λmax =
hc

w0

=
(6.626068× 10−34 J · s)(2.99792458× 108 m/s)

(1.6098× 10−19 J)
= 1.23397× 10−6 m ≈ 1.23µm = 1230 nm.

The longest wavelength of light that will eject electrons from this metal is about 1230 nm

8. A particle is in an region of space where it has a wave function given by

Ψ(x, t) =
{

0, x < 0,
Ae−κxeiEt/~, x > 0.

What is the value of A? [5]

Solution: We need to normalize the wave function by setting the integral over all space of
P (x, t)dx = Ψ∗(x, t)Ψ(x, t)dx to 1.
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)
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0
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−2κ

]
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[
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1
2κ

]
1 =

A2

2κ
=⇒ A =

√
2κ

For Ψ(x, t) to be properly normalized, A must have a value of
√

2κ.



9. A particle of mass m is confined to a harmonic oscillator potential given by V = mx2ω2/2,
where ω2 = K/m and K is the force constant. The particle is in a state described by the wave
function

Ψ(x, t) = Ae

„
−mx2ω

2~ −iωt
2

«
.

Verify that this is a solution of Schroedinger’s equation. [5]

Solution: Taking the given function, the various derivatives of Ψ(x, t) are:
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Building on (9.2) and using the given potential we get:
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Taking (9.1) and multiplying by i~ we get
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Since (9.3) and (9.4) are equal, we can put them together to get
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2m
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+ VΨ = i~
∂Ψ
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,

which is the Schroedinger’s equation,

− ~2

2m
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.

Thus the given function Ψ(x, t) is a solution to the Schroedinger’s equation for the given
potential V (x, t).



10. A particle moves in an infinite potential well described by

V (x) =
{

0, |x| > a/2,
∞, |x| ≤ a/2.

The eigenfunctions are of the form ψn(x) = An cos (knx), or ψn(x) = Bn sin (knx), depending
on the value of n. For n = 3, ψ3(x) = (

√
2/a) cos (3πx/a) for |x| ≤ a/2 and ψ3(x) = 0 for

|x| > a/2.

(a) What are the expectation values of x and x2 in the n = 3 state. [5]
Solution: The expectation value of x is calculated by integrating ψ∗3xψ3dx over all
space, but since the wave function is zero outside of ±a/2 we only need to integrate in
this region.

x =
∫ +a/2

−a/2
ψ∗(x)xψ(x)dx
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(
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(
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a
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3π
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−3π/2

odd︷︸︸︷
u

even︷ ︸︸ ︷
cos2 u︸ ︷︷ ︸

odd

du = 0

x = 0.

The expectation value of x2 is calculated by integrating ψ∗3x
2ψ3dx over all space, but

since the wave function is zero outside of ±a/2 we only need to integrate in this region.
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(b) What are the expectation values of p and p2 in the n = 3 state. [5]
Solution: To calculate the expectation value for momentum, we need to use the mo-
mentum operator −i~(∂/∂x).
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To calculate the expectation value for p2 we need to use −~2(∂2/∂x2).
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11. Do ONE of the part (a) or part (b). [15]

(a) In a Compton scattering event, the scattered photon was found to have an energy of
120 keV, and the recoil electron was given a kinetic energy of 40 keV.

i. What was the wavelength of the incident photon? [5]
Solution: The energy of the incident photon is Eip = Esp+Kre = 120 keV+40 keV =
160 keV. This energy is related to the wavelength of the photon by

Eip = hνip =
hc

λip

λip =
hc

Eip
=

(4.1356668× 10−15 eV · s)(2.99792458× 108 m/s)
1.6× 105 eV

= 7.7490107× 10−12 m ≈ 7.75× 10−12 m.

The wavelength of the incident photon is about 7.75 pm.
ii. What was the scattering angle θ for the 120 keV photon? [5]

Solution: The wavelength of the scattered photon gives us ∆λ by

λsp =
hc

Esp
=

(4.1356668× 10−15 eV · s)(2.99792458× 108 m/s)
1.2× 105 eV

= 0.103320× 10−12 m

∆λ = λc(1− cos θ) = λsp − λip = 2.58300× 10−12 m
∆λ
λc

=
2.58300

2.4263106
= 1.06458

1− cos θ = 1.06458
cos θ = −0.0645811042

θ = cos−1 (−0.0645811042) = 1.635422407 rad ≈ 93.7◦.

The 120 keV photon is scattered at an angle of about 93.7◦. Note that this is greater
than 90◦, indicating that the scattered photon is coming slightly back in the same
direction as the incident photon.
Alternatively, one can calculate ∆λ/λc via

∆λ = λsp − λip = hc

(
1
Esp

− 1
Eip

)
∆λ = λc(1− cos θ) =

h

mec
(1− cos θ)

1− cos θ =
∆λ
λc

= ∆λ
mec

h

= hc

(
1
Esp

− 1
Eip

)
mec

h
= mec

2

(
1
Esp

− 1
Eip

)
= (510.998903 keV)

(
1

120 keV
− 1

160 keV

)
1− cos θ = 1.06458.



iii. What angle φ does the path of the scattered electron make with the direction of the
incident photon? [5]
Solution: The kinetic energy of the recoil electron is less than 10% of its rest mass
energy, so non-relativistic relations will be fairly accurate. The momentum of the
electron in the y direction, perpendicular to the initial photon’s direction of travel,
must be equal and opposite to the momentum of the scattered photon in the y
direction, since there is zero total momentum in the y direction. Thus

pipy = 0 = prey + pspy

prey = −pspy

pre sinφ = −psp sin θ√
2meEre sinφ = −Esp

c
sin θ

sinφ = − Esp√
2mec2Ere

sin θ

= − (120 keV)√
2(510.998903 keV)(40 keV)

sin (1.635422407)

= −0.5922686084

φ = sin−1 (−0.5922686084) = −0.6338714937 rad ≈ −36.3◦.

The electron is scattered about 36.3◦from the path of the incident photon, with the
negative sign indicating that the electron is scattered on the one side of the x axis
as defined by the direction of the incident photon, while the scattered photon is on
the opposite side.

(b) Electrons are accelerated through an electric potential V and then fall on a pair of slits
that have a separation of 100 nm. The resultant interference pattern indicates that the
electrons have a wavelength of 1.0 nm.

i. What is the momentum of one of the electrons? [5]
Solution: The momentum is related to the de Broglie wavelength by

p =
h

λ
=

(6.626068× 10−34 J · s)
(1.0× 10−9 m)

= (6.626068×10−25 kg ·m/s) ≈ 6.63×10−25 kg ·m/s.

The momentum of one of the electrons is about 6.63× 10−25 kg ·m/s.
ii. What is the accelerating electric potential V ? [5]

Solution: With a momentum of about 6.63 × 10−25 kg ·m/s and a mass of me =
9.10938188 × 10−31 kg, the electron’s velocity of v = p/m = 7.274 × 105 m/s � c,
thus we can use non-relativistic relations. The kinetic energy gives us

K = eV =
p2

2me
.

V =
p2

2eme
=

(6.626068× 10−25 kg ·m/s)2

2(1.602176462× 10−19 Coul)(9.10938188× 10−31 kg)
= 1.5041201366 V ≈ 1.50 V.

The accelerating electric potential is about 1.50 V.



iii. Using the uncertainty principle for the electrons after passing through the slits, what
is the minimum spread in the electron’s momentum in the direction parallel to the
plane of the slits and perpendicular to the average path of the electron? [5]
Solution: Since the slits are separated by 100 nm, the uncertainty in the position
in the direction parallel to the plane of the slits is ∆x = 100 nm. Thus

∆x∆px ≥
~
2

∆px ≥
~

2∆x
=

(1.05457148× 10−34 J · s)
2(1.0× 10−7 m)

≥ 5.2728574× 10−28 kg ·m/s ≈ 5.27× 10−28 kg ·m/s.

The minimum spread in the electron’s momentum in the direction parallel to the
plane of the slits is about 5.27× 10−28 kg ·m/s.


