
Physics 202H - Introductory Quantum Physics I
Homework #12 - Solutions

Fall 2004 Due 5:01 PM, Monday 2004/12/13

[70 points total]

“Journal” questions. Briefly share your thoughts on the following questions:
– What aspects of this course do you think you are most likely to use in the future, both in your
“physics” existence and in your “day-to-day” life?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. Please complete the anonymous end of course survey online on WebCT. Constructive feed-
back will hopefully allow us to have the best possible courses in the future, and provide the
instructor and department with useful information about student reactions to many aspects
of the program. In addition to the bonus assignment marks, survey participation may count
towards overall class participation scores. [5.01-bonus]

Solution: Do the survey - get the bonus marks.

2. (From Eisberg & Resnick, Q 5-28 and 5-29, pg 169) Why is ψ necessarily an oscillatory
function if V (x) < E? Why does ψ tend to go to infinity if V (x) > E? Limit your discussion
to about 50 words or so. [10]

Solution: The eigenfunction ψ is a solution to the time-independent Schroedinger equation,
and thus depending on the sign of V (x)−R will have a solution of either positive and negative
exponentials (when V (x) > E) or positive and negative imaginary exponentials. Exponentials
go to infinity for large values of x, and of course negative exponentials go to infinity for large
negative values of x, compared with imaginary exponentials, which are oscillatory.

3. (From Eisberg & Resnick, P 5-4, pg 169) By evaluating the classical normalization integral
in Example 5-6, show that the value of the constant B2 =

√
(C/mπ2) which satisfies the re-

quirement that the total probability of finding the particle in the classical oscillator somewhere
between its limits of motion must equal one. [10]

Solution: From Eisberg & Resnick, Example 5-6, pg 136, we can arrive at an expression
for the probability density P based on the classical calculation of the fraction of the time
the oscillator is at each section of the range. This probability is inversely proportional to its
velocity.
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To find the value of B, we need to normalize this probability, insuring that the total probability
of finding the particle in all allowed locations is unity.
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E, the total energy, is a constant, and can be stated in terms of a, the maximum value for x,
since at this point, the velocity of the particle will be zero.
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This gives us the integral that we need to evaluate, namely
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Either looking up the integral, or doing a trigonometric substitution gives us the result that
the integral is equal to arcsin (x/a)
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The angle who’s sin is 1 is π/2, and the angle who’s sin is −1 is −π/2, so this expression
becomes
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Solving for B2 gives us
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4. (From Eisberg & Resnick, P 5-7, pg 170)
(a) Use the particle in a box wave function verified in Example 5-9, with the value of A2 = 2/a

determined in Example 5-10, to calculate the probability that the particle associated with
the wave function would be found in a measurement within a distance of a/3 from the
right-hand end of the box of length a. The particle is in its lowest energy state. [10]
Solution: The probability of finding the particle between points x1 and x2 is given by∫ x2
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The probability that the particle associated with the wave function would be found in a
measurement within a distance of a/3 from the right-hand end of the box of length a is
about 0.1955, or just under 20%.

(b) Compare with the probability that would be predicted classically from a simple calcula-
tion related to the one in Example 5-6, for a particle with constant speed bouncing back
and forth from the ends of the box. [5]
Solution: For a particle with constant speed, the probability of finding it at any point
in the box is equal, and the probability density is just 1/a. Thus,∫ x2
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For a classical particle with constant speed, the probability that the particle would be
found in a measurement within a distance of a/3 from the right-hand end of the box of
length a is 1/3 or a bit more than 33%



(c) Compare with the probability that would be predicted classically from a calculation
related to the one in Example 5-6, for a particle undergoing simple harmonic motion
with the value of B2 =

√
(C/mπ2). [5]

Solution: Building on the calculations carried out in the previous problem, with the
small change that the previous problem had a box size of 2a and this one has a size of a,
the probability of finding the particle between points x1 and x2 for a particle undergoing
simple harmonic motion is given by∫ x2
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For a classical particle undergoing simple harmonic motion , the probability that the
particle would be found in a measurement within a distance of a/3 from the right-hand
end of the box of length a is about 0.3918 or a bit less than 40%.



5. (From Eisberg & Resnick, P 6-11 and 6-12, pg 229)

(a) Verify by substitution that the standing wave general solution, (Eisberg & Resnick,
Equation 6-62, pg 211), satisfies the time-independent Schroedinger equation, (Eisberg
& Resnick, Equation 6-2, pg 178), for the finite square well potential in the region inside
the well. [5]
Solution: The time-independant Schroedinger equation is

− ~2

2m
d2ψ(x)

dx2
+ V (x, t)ψ(x) = Eψ(x). (5.1)
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which is (5.2), the time-independent Schroedinger equation in the region inside the well.
Thus we have shown that (5.3) is a solution to the time-independent Schroedinger equa-
tion (5.1) in the specified region.



(b) Verify by substitution that the exponential general solution, (Eisberg & Resnick, Equa-
tion 6-63 and 6-64, pg 212), satisfy the time-independent Schroedinger equation, (Eisberg
& Resnick, Equation 6-13, pg 186), for the finite square well potential in the regions out-
side the well. [5]
Solution: For the region outside the well, the potential V (x) = V0, so the time-
independent Schroedinger equation becomes
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which is (5.5), the time-independent Schroedinger equation in the region outside the
well. Thus we have shown that (5.6) is a solution to the time-independent Schroedinger
equation (5.1) in the specified region.
Similarly, for ψc(x) we have:
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which is (5.5), the time-independent Schroedinger equation in the region outside the
well. Thus we have shown that (5.7) is a solution to the time-independent Schroedinger
equation (5.1) in the specified region.



6. (From Eisberg & Resnick, Q 6-15, pg 227) A particle is incident on a potential barrier of width
a, with total energy less than the barrier height, and it is reflected. Does the reflection involve
only the potential discontinuity facing its direction of incidence? If the other discontinuity were
moved by increasing a, is the reflection coefficient changed? What if the other discontinuity
were removed, so that the barrier was changed into a step? Limit your discussion to about 50
words or so. [10]

Solution: The reflection does not only involve the potential discontinuity facing the direc-
tion of incidence. The width of the barrier has an effect on the reflection and transmission
coefficients, as the barrier width is increased the amount of reflection in general decreases
(thought there are some particular widths and energies for which the amount of reflection
is particularly high or low due to constructive or destructive interference between the waves
reflected off of each discontinuity.) If the second discontinuity were removed, changing the
barrier into a step, then there would be 100% reflection, compared to smaller reflections for
barriers of finite thickness.

7. (From Eisberg & Resnick, Q 6-34, pg 231) Verify the eigenfunction and eigenvalue for the
n = 2 state of a simple harmonic oscillator by direct substitution into the time-independent
Schroedinger equation, as in (Eisberg & Resnick, Example 6-7, pg 224). [10]

Solution: The time-independant Schroedinger equation is
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The n = 2 eigenfunction is
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The second derivative of ψ is:

d2ψ2(x)
dx2

=
ddψ2(x)

dx

dx
=

ddψ2(u)
du

du
dx

du
du
dx

=
d2ψ2(u)

du2

(
du
dx

)2

=
d
(
−4A2ue−u

2/2 − uψ2

)
du

(
(Cm)1/4

~1/2

)2

= −

d
(
4A2ue−u

2/2
)

du
+

d (uψ2)
du

 √Cm
~

= −

d (4A2u)
du

e−u
2/2 + 4A2u

d
(
e−u

2/2
)

du
+

d (u)
du

ψ2 + u
d (ψ2)

du

 √Cm
~

= −
(
4A2e−u

2/2 − 4A2u
2e−u

2/2 + ψ2 + u
(
−4A2ue−u

2/2 − uψ2

)) √Cm
~

= −
(
4A2e−u

2/2 − 4A2u
2e−u

2/2 + ψ2 − 4A2u
2e−u

2/2 − u2ψ2

) √Cm
~

=
(
−4A2e−u

2/2 + 8A2u
2e−u

2/2 − ψ2 + u2ψ2

) √Cm
~

=
(
−4A2

(
1− 2u2

)
e−u

2/2 − ψ2 + u2ψ2

) √Cm
~

=
(
−4ψ2 − ψ2 + u2ψ2

) √Cm
~

=
(
u2 − 5

) √Cm
~

ψ2,

which is (7.2), the time-independent Schroedinger equation for the harmonic potential. Thus
we have shown that (7.3) is a solution to the time-independent Schroedinger equation (7.1)
for the specified potential.

Headstart for next week, Week 13, starting Monday 2004/12/13:
– Review notes, review texts, review assignments, learn material, do well on exam


