
Physics 202H - Introductory Quantum Physics I
Homework #09 - Solutions

Fall 2004 Due 5:01 PM, Monday 2004/11/22

[50 points total]

“Journal” questions. Briefly share your thoughts on the following questions:
– Within the subject matter of this course, what do you think the best methods of evaluating stu-
dent knowledge and/or skills would be? What single change to how we do evaluation in this course
do you think would be best? What is the best feature of the evaluation method used in this course?
Why?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Eisberg & Resnick, Q 5-25, pg 168) Explain briefly the meaning of a well-behaved
eigenfunction in the context of Schroedinger quantum mechanics. Why do we need the eigen-
function to be well-behaved? Limit your discussion to about 50 words or so. [10]

Solution: The eigenfunction of the time-independent Schroedinger equation is the spatial part
of the wave function which is a solution to the Schroedinger equation for a time-independent
potential energy function. Since the wave function is used to calculate actual quantities
that can be measured in the lab, it is reasonable to insist that the calculated quantities are
“well-behaved”, namely that they are not discontinuous, multi-valued, or infinite. Thus it is
necessary that the eigenfunctions (and their first derivatives) are also “well-behaved”, namely
that they are continuous, single-valued, and finite in order that measurable quantities which
can be evaluated from the eigenfunctions will also be well-behaved.

2. (From Eisberg & Resnick, P 5-1, pg 169) If the wave functions Ψ1(x, t), Ψ2(x, t), and Ψ3(x, t)
are three solutions to the Schroedinger equation for a particular potential V (x, t), show that
the arbitrary linear combination Ψ(x, t) = c1Ψ1(x, t)+c2Ψ2(x, t)+c3Ψ3(x, t) is also a solution
to that equation. [10]

Solution: Since the three wave functions are solutions to the Schroedinger equation, we know
that
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If we try the wave function Ψ(x, t) in the Schroedinger equation we get:
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The constants do not effect the derivatives, and so we can bring them outside after gathering
like terms together and we get
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Equation (2.4) is made up of (2.1), (2.2), and (2.3) (with a few constants thrown in).
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So (2.4) reduces to
c1[0] + c2[0] + c3[0] = 0. (2.5)

Since (2.5) is certainly true for any values of c1, c2, c3, it follows that Ψ(x, t) is a solution to
the Schroedinger equation for a particular potential V (x, t) provided Ψ1(x, t), Ψ2(x, t), and
Ψ3(x, t) are solutions to that equation.

3. (From Eisberg & Resnick, P 5-23, pg 172) Consider a particle moving in the potential V (x)
plotted in Figure 5-22. For the following ranges of the total energy E, state whether there
are any allowed values of E and if so, whether they are discretely separated or continuously
distributed. [10]

(a) E < V0,
Solution: There are no allowed values of E.

(b) V0 < E < V1,
Solution: There are allowed values of E, discretely separated since the particle is bound
on each side.

(c) V1 < E < V2,
Solution: There are allowed values of E, discretely separated since the particle is bound
on each side.

(d) V2 < E < V3,
Solution: There are allowed values of E, continuously distributed since the particle is
free on one side.

(e) V3 < E.
Solution: There are allowed values of E, continuously distributed since the particle is
free on each side.



4. (From Eisberg & Resnick, P 5-27, 5-28, pg 173)

(a) By substitution into the time-independent Schroedinger equation for the potential illus-
trated in Figure 5-23, show that in the region to the right of the binding region the
eigenfunction has the mathematical form [10]
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Solution: Figure 5-23 is a well of length a and depth V0 centred on x = 0. Bound
states will thus have total energy less than V0, or equivalently (V0 − E) > 0. The time-
independant Schroedinger equation is
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For the region to the right of the binding region (x > a/2), V (x) = V0, so we can restate
the TISE as
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Taking the given solution, we can calculate the second derrivative
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Since (4.1) is identical with (4.2) we have shown that the given function is a solution the
the TISE.
More generally, since (V0 − E) > 0, the most general solution to (4.1) is of the form
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Since we require that ψ(x) is finite, for x > a/2 we must have B = 0 otherwise we would
have ψ(x) go to infinity as x goes to infinity. This gives us
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which is the same as the given function.



(b) Using the probability density corresponding to the eigenfunction above, write an expres-
sion to estimate the distance D outside the binding region of the potential within which
there would be an appreciable probability of finding the particle. [10]
(Hint: Take D to extend to the point at which Ψ∗Ψ is smaller than its value at the edge
of the binding region by a factor of e−1. This e−1 criterion is similar to one often used
in the study of electrical circuits.)
Solution: Note that we are comparing the probability densities at different points not
the total probability to find the particle in particular regions - we do not need to do any
integration.
We would like to find the value of x′ > a/2 (thus (2x′ − a) > 0) where[
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We also know that Ψ(x, t) = ψ(x)φ(t) with φ(t) = e−iEt/~ and φ(x) given above. Evalu-
ating (4.3) gives us:

Ψ(x′, t)∗Ψ(x′, t) =
1
e
Ψ(
a

2
, t)∗Ψ(

a

2
, t)(

Ae−kx′e+iEt/~
) (

Ae−kx′e−iEt/~
)

=
1
e

(
Ae−ka/2e+iEt/~

) (
Ae−ka/2e−iEt/~

)
e−2kx′ =

1
e
e−ka

1
e

= e−2kx′+ka = e−k(2x′−a)

e = ek(2x′−a)

loge (e) = loge

(
ek(2x′−a)

)
1 = k(2x′ − a) =⇒ 1

k
= (2x′ − a)

2x′ =
1
k

+ a

x′ =
1
2k

+
a

2

x′ =
~

2
√

2m(V0 − E)
+
a

2

At the position x′, the probability density will smaller than its value at the edge of the
binding region by a factor of e−1. The distance D, measured outside the binding region,
is given by D = x′ − a/2 so we have
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Headstart for next week, Week 10, starting Monday 2004/11/22:
– Read Chapter 6 “Solutions of Time-Independent Schroedinger Equation” in Eisberg & Resnick
– – Section 6.1 “Introduction”
– – Section 6.2 “The Zero Potential”
– – Section 6.3 “The Step Potential’ (Energy Less Than Step Height)’
– – Section 6.4 “The Step Potential (Energy Greater Than Step Height)”


