
Physics 202H - Introductory Quantum Physics I
Homework #08 - Solutions

Fall 2004 Due 5:01 PM, Monday 2004/11/15

[55 points total]

“Journal” questions. Briefly share your thoughts on the following questions:
– Of the material that has been covered in the course up to the mid term test, what has been the
most difficult for you to understand? What material has been the most interesting? What material
has been the most surprising? Is there any material that you thought you understood before this
course that you now have a drastically different understanding of? What was is and what has
changed?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. Please complete the anonymous mid-course survey online on WebCT. Early feedback will
hopefully allow us to have the best possible course this semester rather than just having next
year’s students benefit. In addition to the bonus assignment marks, survey participation may
count towards overall class participation scores. [5.01-bonus]

Solution: Do the survey - get the bonus marks.

2. (From Eisberg & Resnick, Q 5-15, pg 168) What is the basic connection between the properties
of a wave function and the behaviour of the associated particle? Limit your discussion to about
50 words or so. [10]

Solution: The wave function determines the probability of finding the associated particle in a
given region during a given time period. More specifically, the probability density is given by
P (x, t) = Ψ∗(x, t)Ψ(x, t). Not only does the wave function determine the probability density,
but allows us to calculate the expectation value of any dynamical function of position, time,
and momentum of the associated particle (as long as we use the momentum operator in our
calculation), thus we can calculate x, x2, p, etc. From Eisberg & Resnick: “The wave function
contains all the information that the uncertainty principle will allow us to learn about the
associated particle.”

http://www.trentu.ca/webct/


3. (From Eisberg & Resnick, P 5-9, 5-10, 5-11, 5-12, pg 168)

(a) Following the procedure of Example 5-9, verify that the wave function

Ψ2(x, t) =


0, x < −a/2,

A sin
(

2πx
a

)
e−iE2t/~, −a/2 < x < +a/2,

0, +a/2 < x.

is a solution to the Schroedinger equation in the region −a/2 < x < +a/2 for a particle
which moves freely through the region but which is strictly confined to it and determine
the value of the total energy E2 of the particle in this excited state of the system, and
compare with the total energy of the ground state E1 found in Example 5-9. [10]
Solution: The Schroedinger equation is

− ~2

2m
∂2Ψ(x, t)
∂x2

+ V (x, t)Ψ(x, t) = i~
∂Ψ(x, t)
∂t

.

For the region between x > −1/2 and x < +a/2, the potential energy is zero V (x, t) = 0,
so the Schroedinger equation reduces to
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, k =

√
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~
.

The various derrivatives of Ψ2(x, t) in the region −a/2 < x < +a/2 are:

∂Ψ2(x, t)
∂x
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a
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Solving (2.3) and (2.4) for like terms and setting them equal to each other gives us
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Comparing (2.1) and (2.5), we see that Ψ2(x, t) is a solution to the Schroedinger equation
in the region −a/2 < x < +a/2 provided that

2m
~

=
4π2~
a2E2

=⇒ E2 =
4π2~2

2ma2
=

2π2~2

ma2
=

h2

2ma2
. (2.6)

Thus the given wave function Ψ2(x, t) is a solution to the Schroedinger equation for
E2 = (h2)/(2ma2). Equation (2.6) shows us that E2 = (4π2~2)/(2ma2), while Example 5-
9 gave us E1 = (π2~2)/(2ma2), thus E2 = 4E1.



(b) Plot the space dependence of this wave function Ψ2(x, t). Compare with the ground
state wave function Ψ1(x, t) of Figure 5-7, and give a qualitative argument relating the
difference in the two wave functions to the difference in the total energies of the two
states. [5]
Solution: The wave function of the ground state Ψ1(x, t) has a space dependence which
is one half of a complete sin cycle. In figure 1 we have plotted the normalized wave
functions, anticipating the result of the next problem, with a = 1. We used Maple with
the following commands to generate the plot.

> restart; with(plots);
> plot([(sqrt(2)*cos(Pi*x)),(sqrt(2)*sin(2*Pi*x))], x=-(0.5)..(0.5),

colour=[navy, blue], legend=["psi_1", "psi_2"], linestyle=[3,2]);
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Figure 1: ψ1(x) and ψ2(x) with a = 1

As we can see in figure 1, the wave function of the excited state Ψ2(x, t) has a space
dependence which is a complete sin cycle. Thus the wavelength of Ψ1(x, t) is twice that
of Ψ2(x, t), which as we expect, corresponds with a greater energy for Ψ2(x, t) compared
with Ψ1(x, t). Ψ2(x, t) also has a more sharply curved shape, also corresponding to
having greater energy.



(c) Normalize the wave function Ψ2(x, t) above by adjusting the value of the multiplicative
constant A so that the total probability of finding the associated particle somewhere in
the region of length a equals one. Compare with the value of A obtained in Example 5-10
by normalizing the ground state wave function Ψ1(x, t). Discuss the comparison. [10]
Solution: To normalize a wave function we integrate P (x, t)dx = Ψ∗(x, t)Ψ(x, t)dx over
all values of x, and set that equal to one. For the wave function in question, it has a
value of zero for any x outside of |x| < a/2 so:
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With this value for A, the complete normalized wave function is

Ψ2(x, t) =


0, x < −a/2,√

2
a

sin
(

2πx
a

)
e−iEt/~, −a/2 < x < +a/2,

0, +a/2 < x.

The normalization for Ψ1(x, t) is identical with the normalization for Ψ2(x, t), in each
case A =

√
2/a.

Ψ1(x, t) =


0, x < −a/2,√

2
a
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(πx
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)
e−iEt/~, −a/2 < x < +a/2,

0, +a/2 < x.

(d) Calculate the expectation value of x, the expectation value of x2, the expectation value
of p, and the expectation value of p2 for the particle associated with the wave function
Ψ2(x, t) above. [10]
Solution: The expectation value of x is calculated by integrating Ψ∗2xΨ2dx and the
expectation value of x2 is calculated by integrating Ψ∗2x

2Ψ2dx.
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x2 =
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We can use the trig identity sin2 u = (1−cos (2u))/2 and the integral formula
∫
u2 cos (2u) du =

(u/2) cos (2u) + (u2/2− 1/4) sin (2u) to simplify things a little bit:
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)
x2 ≈ (0.07066 . . . )a2

To calculate the expectation value for momentum, we need to use the momentum operator
−i~(∂/∂x).
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To calculate the expectation value for p2 we need to use −~2(∂2/∂x2).
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The expectation value of x is zero, and the expectation value of x2 is about (0.0707)a2.
The expectation value of p is zero, and the expectation value of p2 is h2/a2. Note that

the square root of the expectation value of p2, namely
√
p2 = h/a (called the root-mean-

square value of p) is a measure of the fluctuations around the average p = 0. This RMS
value is also a measure of the uncertainty in p.



4. (From Eisberg & Resnick, P 5-16, pg 169) Show by direct substitution into the Schroedinger
equation that the wave function Ψ(x, t) = ψ(x)e−iEt/~ satisfies that equation if the eigenfunc-
tion ψ(x) satisfies the time-independent Schroedinger equation for a potential V (x). [10]

Solution: The Schroedinger equation is

− ~2

2m
∂2Ψ(x, t)
∂x2

+ V (x, t)Ψ(x, t) = i~
∂Ψ(x, t)
∂t

. (4.1)

If we make the substitution Ψ(x, t) = ψ(x)e−iEt/~ and V (x, t) = V (x) we have

− ~2

2m
∂2

[
ψ(x)e−iEt/~]
∂x2

+ V (x, t)
[
ψ(x)e−iEt/~

]
= i~

∂
[
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∂t
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2m
d2ψ(x)

dx2
e−iEt/~ + V (x, t)ψ(x)e−iEt/~ = i~ψ(x)

de−iEt/~

dt

− ~2

2m
d2ψ(x)

dx2
e−iEt/~ + V (x, t)ψ(x)e−iEt/~ = i~ψ(x)

−iE
~

e−iEt/~(
− ~2

2m
d2ψ(x)

dx2
+ V (x, t)ψ(x)
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We can divide (4.2) through by e−iEt/~ to get

− ~2

2m
d2ψ(x)

dx2
+ V (x, t)ψ(x) = Eψ(x). (4.3)

If ψ(x) satisfies (4.3), then working upwards from line (4.3) we have that Ψ(x, t) satisfies the
Schroedinger equation (4.1).

Equation (4.3) is the time-independent Schroedinger equation for a potential V (x), and we
were given that ψ(x) is a solution to the time-independent Schroedinger equation for a po-
tential V (x), therefore, Ψ(x, t) is a solution to the Schroedinger equation.

Headstart for next week, Week 09, starting Monday 2004/11/15:
– Read Chapter 5 “Schroedinger’s Theory of Quantum Mechanics” in Eisberg & Resnick
– – Section 5.6 “Required properties of Eigenfunctions”
– – Section 5.7 “Energy Quantization in the Schroedinger Theory”
– – Section 5.8 “Summary”


