
Physics 202H - Introductory Quantum Physics I
Homework #07 - Solutions

Fall 2004 Due 5:01 PM, Monday 2004/11/08

[80 points total]

“Journal” questions. Briefly share your thoughts on the following questions:
– What physics material do you recall from your elementary school experiences (up to about age
12)? How was it presented? What was your perception of the instructor’s attitude to the material?
What about other non-physics sciences? Math?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Eisberg & Resnick, P A-11, pg A-18) With modifications.

(a) What potential difference will accelerate an electron to the speed of light according to
classical (non-relativistic) physics? [5]
Solution: The particle’s kinetic energy is K = q∆V = eV where V is the electrical
potential difference it is accelerated through. According to classical physics the kinetic
energy is also given by K = mv2/2, thus
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Classically, about 255 kV or 0.255 MV or 2.55×105 V would accelerate an electron to the
speed of light.

(b) With this potential difference, what speed will an electron acquire relativistically? [5]
Solution: With this electric potential difference, the electron would have the same
kinetic energy as above K = eV = 1
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need to use the relativistic relationships to find the electron’s speed, K = eV = E−m0c
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If we let the right hand side of this relationship be A, we can solve for v2 to get
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With K = eV = 1
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2 ≈ 0.255 MeV ≈ 4.09× 10−14 J we have
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c = (0.74535 . . . )c = 2.234521 . . .× 108 m/s

≈ (0.745)c ≈ 2.23× 108 m/s.

An electron accelerated through this electrical potential difference will move at about
74.5% of the speed of light or about 2.23× 108 m/s.

(c) What would its relativistic momentum be at this speed? [5]
Solution: From above, we have an expression for the relativistic momentum:
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2 = (1.1180339887)(0.511 MeV) = 0.57131 MeV = 9.1533× 10−14 J
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mec = 3.0532 . . .× 10−22 kg ·m/s

The relativistic momentum of the electron would be about 3.05× 10−22 kg ·m/s.

(d) What would its relativistic kinetic energy be at this speed? [5]
Solution: The relativistic kinetic energy is the same as the non-relativistic kinetic energy
as calculated above, K = eV = 1

2mec
2 ≈ 0.255 MeV ≈ 4.09× 10−14 J.



2. (From Eisberg & Resnick, P 1-9, pg 23) Assuming that λmax is in the near infrared for red
heat and in the near ultraviolet for blue heat, approximately what temperature in Wien’s
displacement law corresponds to red heat? To blue heat? [10]

Solution: Wien’s displacement law gives us that λmaxT = const = 2.898 × 10−3 m ·◦ K.
Depending on the source one looks at visible light is between about 400 − 700 nm, near
infrared wavelengths range from about 770− 1400 nm (or more depending on who is defining
the range) and near ultraviolet wavelengths range from about 200 − 380 nm. Thus a good
typical wavelength for NIR is λNIR = 10−6 m and for NUV is λNUV = 3× 10−7 m.

Tred =
2.898× 10−3 m ·◦ K

λNIR
Tblue =

2.898× 10−3 m ·◦ K
λNUV

=
2.898× 10−3 m ·◦ K

10−6 m
=

2.898× 10−3 m ·◦ K
3× 10−7 m

= 2898 ◦K = 9660 ◦K
≈ 2900 ◦K ≈ 9700 ◦K

“Red heat” is approximately 2900 ◦K and “blue heat” is about 9700 ◦K.

3. (From Eisberg & Resnick, P 2-20, pg 53) What fractional increase in wavelength leads to a
75% loss of photon energy in a Compton collision? [10]

Solution: Before scattering the photon has an energy of Ei = hc/λi and after scattering it
has an energy of Ef = hc/λf where λf = λi + ∆λ. The fractional loss of energy is thus
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If f = 0.75 then we can find the fractional increase in wavelength of ∆λ/λi via
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So a fractional increase in wavelength of 300% leads to a 75% loss of photon energy in a
Compton collision. Note that the final wavelength is four times (400%) the initial wavelength,
λf = 4λi, but the fractional increase is 300%.



4. (From Eisberg & Resnick, P 2-31, pg 54) An electron-positron pair at rest annihilate, creating
two photons. At what speed must an observer move along the line of the photons in order
that the wavelength of one photon be twice that of the other? [10]

Solution: In the centre of mass rest frame, the energy of the two photons must be equal
to the rest mass energy of the electron-positron pair, so each photon will have an energy of
Ephoton = mec

2, and a wavelength of λ = hc/Ephoton = h/mec. For an observer moving with
respect to the centre of mass rest frame at velocity v, the relativistic Doppler shift allows
us to calculate the wavelengths of the two photons which moving in opposite directions. See
Eisberg & Resnick, Example 2-7, pg 46 for an example of this in detail.
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The observer would have to move at c/3 or about 108 m/s for one of the photons to have
twice the wavelength of the other photon. Note that if we had said that λ1 = 2λ2, we would
have got a result that v = −c/3, indicating that the observer would have to move in the other
direction.

We cannot simply do a relativistic length contraction of the wavelength of the photon since
the wavelength of the photon is closely related to the frequency of the photon and the speed
of light - it is not just a rod of length λ that we can contract - we must necessarily use both
length and time transformations for each photon. If you just used length contraction, each
wavelength would have the same contraction - they would have equal wavelengths (to each
other) in the observer’s frame. Rather than doing the correct time/length calculation, it is
much simpler to use the energy and momentum conservation as done in Eisberg & Resnick.



5. (From Eisberg & Resnick, P 3-2, pg 81) The wavelength of the yellow spectral emission
of sodium is 5890 Å. At what kinetic energy would an electron have the same de Broglie
wavelength? [10]

Solution: We want to find the kinetic energy of an electron so that it has a wavelength of
λ = 5890 Å. Since K = 1

2mv2 = p2/2m we have p =
√

2mK and

λ =
h

p
=

h√
2mK

2mK =
h2

λ2

K =
h2

2mλ2
=

(6.6260× 10−34 J · s)2

2(9.109× 10−31 kg)(5890 × 10−10 m)2

= 6.94644 . . .× 10−25 J = 4.33563 . . . × 10−6 eV

K ≈ 6.95 × 10−25 J ≈ 4.34 × 10−6 eV.

An electron with kinetic energy of about 6.95 × 10−25 J or 4.34 × 10−6 eV would have a de
Broglie wavelength equal to the wavelength of the yellow spectral emission of sodium. Note
that this is a very small energy, but it still corresponds with a velocity of about 1230 m/s.
Since the kinetic energy is much less than the rest mass energy of the electron, our non-
relativistic calculation is accurate. Equivalently, the speed of 1230m/s is much less than the
speed of light c, so again the non-relativistic calculation is justified.

6. (From Eisberg & Resnick, P 3-27, pg 83) The velocity of a positron is measured to be:
vx = (4.00 ± 0.18) × 105 m/s, vy = (0.34 ± 0.12) × 105 m/s, vz = (1.41 ± 0.08) × 105 m/s.
Within what minimum volume was the positron located at the moment the measurement was
carried out? (Note: I think that the answer in the back of the text is incorrect for this problem
- it is out by a factor of about 16) [10]

Solution: We are given the uncertainties in the three components of the velocity vector, and
from that can calculate the uncertainties for the momentum vector, ∆~p = m∆~v. Heisenberg’s
uncertainty relationship will then let us place limits on the uncertainty in the position vector.
Given the minimum uncertainty in position, we can calculate the volume of the box that the
positron will be located in.

∆vx = 0.18× 105 m/s ∆vy = 0.12× 105 m/s ∆vz = 0.08× 105 m/s
∆px = m∆vx ∆py = m∆vy ∆pz = m∆vz

∆x >
~

2∆px
=

~
2m∆vx

∆y >
~

2m∆vy
∆z >

~
2m∆vz

Since each of these uncertainties in position represents the maximum deviation from the value
of the position, both positive and negative, the minimum volume of the box in question is
given by multiplying 2∆x by 2∆y by 2∆z. Thus we have

V = (2∆x)(2∆y)(2∆z) > 2
(

~
2m∆vx

)
2

(
~

2m∆vy

)
2

(
~

2m∆vz

)
>

~3

m3∆vx∆vy∆vz
=

(1.05457148× 10−34 J · s)3

(9.10938188× 10−31 kg)3(0.18)(0.12)(0.08)(105 m/s)3

V > 8.97879 . . .× 10−25 m3 ≈ 8.98× 10−25 m3.

At the moment when the measurement of the particle’s velocity was carried out, it was located
somewhere within a box who’s volume was about 8.98 × 10−25 m3. Forgetting to take into
account the ± nature of the individual uncertainties in position would result in an answer
that was 23 = 8 times smaller than that calculated above.



Eisberg & Resnick get a different answer for this question (see pg S-1). They seem to have
taken the uncertainties in velocity as being twice what I understand the uncertainties to be.
They then use these values to find the minimum uncertainty in position as above

∆v′x = 0.36× 105 m/s ∆v′y = 0.24× 105 m/s ∆v′z = 0.16× 105 m/s

∆p′x = m∆v′x ∆p′y = m∆v′y ∆p′z = m∆v′z

∆x′ >
~

2∆p′x
=

~
2m∆v′x

∆y′ >
~

2m∆v′y
∆z′ >

~
2m∆v′z

To calculate the minimum volume, Eisberg & Resnick seem to have just multiplied ∆x′ by
∆y′ by ∆z′, with no factors of two to take into account the ± nature of the uncertainty in
position.

V ′ = (∆x′)(∆y′)(∆z′) >

(
~

2m∆v′x

) (
~

2m∆v′y

) (
~

2m∆v′z

)
>

~3

8m3∆v′x∆v′y∆v′z
=

(1.05457148× 10−34 J · s)3

8(9.10938188× 10−31 kg)3(0.36)(0.24)(0.16)(105 m/s)3

V ′ > 1.4029 . . .× 10−26 m3 ≈ 1.40× 104 Å3.

The uncertainties ∆x and ∆px in the Heisenberg uncertainty relationship clearly represent the
standard deviation from the expectation value of the position and momentum of the particle
(and this notation is consistent with standard methods of reporting uncertainty). Thus in
general you would expect to use 2∆x when describing the range of values of position (as we
did when calculating the minimum volume of the box), but not use 2∆px = m2∆vx in the
Heisenberg relation in order to calculate the range for ∆x, as Eisberg & Resnick seem to have
done.

7. (From Eisberg & Resnick, Q 5-5, pg 168) Why is the Schroedinger equation not valid for
relativistic particles? Limit your discussion to about 50 words or so. [10]

Solution: The Schroedinger equation was created using the non-relativistic expressions for
momentum (p = mv) and kinetic energy (k = 1

2mv2). Most importantly the expression for
total energy used to develop the Schroedinger, E = p2/2m + V , is non-relativistic. Since
the starting point for the entire structure of the Schroedinger equation was non-relativistic,
it should not be too surprising that the results are non-relativistic as well. It was not until
Dirac’s work in 1929 that a relativistic form of quantum mechanics was put together.

Headstart for next week, Week 08, starting Monday 2004/11/08:
– Review Section 2.3.6 “The Schrödinger equation” in “Simple Nature” by Crowellk
– Read Chapter 5 “Schroedinger’s Theory of Quantum Mechanics” in Eisberg & Resnick
– – Section 5.4 “Expectation Values”
– – Section 5.5 “The Time-Independent Schroedinger Equation”


