
Physics 202H - Introductory Quantum Physics I
Homework #06 - Solutions

Fall 2004 Due 5:01 PM, Monday 2004/11/01

[65 points total]

“Journal” questions. Briefly share your thoughts on the following questions:
– About how much time per week are you spending on the various aspects of this course, outside of
scheduled class times? (ie: lab, assignments, non-assignment pre-reading, general studying, etc.?)
About how much time do you think that you SHOULD be spending on the various aspects of this
course? Do you have any suggestions on how the course could be arranged to reduce the course
workload without significantly reducing the amount and depth of material covered?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Eisberg & Resnick, Q 4-9, pg 120) For the Bohr hydrogen atom orbits, the potential
energy is negative and greater in magnitude than the kinetic energy. What does this imply?
Limit your discussion to about 50 words or so. [10]

Solution: The value of the potential energy depends on where the zero of potential energy
is defined. For electric charge systems, it is usually most convenient to define zero to be at
“infinite” distance, thus for an attractive force such as between an atomic nucleus (positive
charge) and an electron (negative charge), the potential energy will be negative, since as the
two charges come closer together, their potential energy decreases. Since zero potential energy
is defined to be the situation when the electron is freed from the nucleus, the kinetic energy of
any bound electron must be less in magnitude than the magnitude of the potential energy. If
the kinetic energy of the electron was greater than the magnitude of the (negative) potential
energy, the electron would have enough kinetic energy to “get away” from the nucleus, and
would not be bound to it in an atomic system.

2. (From problem 2-27, “Simple Nature”, Crowell, pg 107) Assume that the kinetic energy of
an electron the n = 1 state of a hydrogen atom is on the same order of magnitude as the
absolute value of its total energy, and estimate a typical speed at which it would be moving.
(It cannot really have a single, definite speed, because its kinetic and interaction energy
trade off at different distances from the proton, but this is just a rough estimate of a typical
speed.) Based on this speed, were we justified in assuming that the electron could be described
nonrelativistically? [10]

Solution: For the n = 1 state of a hydrogen atom, the binding energy is about −13.6 eV
from

E = −
(

1
4πε0

)2 me4Z2

2~2
= −2.17× 10−18 J = −13.6 eV.

For non non-relativistic velocities,

K =
1
2
mv2 =⇒ v =

√
2K

m
,

so if we assume that the kinetic energy is about the same as the binding energy in magnitude,
we get

v ≈

√
(4× 10−18 J)

(9.109× 10−31 kg)
≈ 2× 106 m/s.

Since this is a bit less than 1% of the speed of light (it is close to 0.7% of c), our non-relativistic
assumption was justified. Note that we only kept one significant figure in our result since we
are really only interested in an order of magnitude estimate of the velocity, based on an order
of magnitude estimate of the kinetic energy.



3. (From problem 2-33, “Simple Nature”, Crowell, pg 108) A muon is a subatomic particle that
acts exactly like an electron except that its mass is 207 times greater. Muons can be created
by cosmic rays, and it can happen that one of an atom’s electrons is displaced by a muon,
forming a muonic atom. If this happens to a hydrogen atom, the resulting system consists
simply of a proton plus a muon.

(a) Based on the results of Crowell Section 2.4.4, how would the size of a muonic hydrogen
atom in its ground state compare with the size of the normal atom? [10]
Solution: The radius of the ground state of the Bohr model is given by

r = 4πε0
n2~2

mZe2
Eisberg & Resnick

≈ 4πε0
n2h2

me2
=

n2h2

mke2
Crowell

The muon has a much greater mass than the electron, mµ = 207me, so

rµ

re
=

n2~2

mµZe2

meZe2

n2~2
=

me

mµ
=

1
207

= 0.0048309 ≈ 0.5%.

More accurately, the reduced mass of of the muon, following Eisberg & Resnick section
4-7 with the nuclear mass of M = 1836me is about µµ = 186me, giving rµ ≈ re/186 ≈
0.0054re.

(b) If you were searching for muonic atoms in the sun or in the earth’s atmosphere by
spectroscopy, in what part of the electromagnetic spectrum would you expect to find the
absorption lines? Why? (Hint: See Eisberg & Resnick, P 4-30, pg 122.) [5]
Solution: The nth energy state of a Bohr atom is given by

En = −
(

1
4πε0

)2 me4Z2

2~2

(
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)
.

For hydrogen, the ground state energy is Ee−1 = −2.17×10−18 J = −13.6 eV. Increasing
the mass of the orbiting particle will proportionately increase the magnitude of each en-
ergy state. The shortest wavelength that is possible (for emission) is given by a transition
from the n = ∞ to the n = 1 state. The absorption spectrum is identical to the emission
spectrum, the only differences being various negative signs signifying absorption rather
than emission.
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me
= (13.6 eV)(207) = (2815.2 eV)

∴ λµ max =
hc

∆Eµ
=

hcme

|Ee−1|mµ
=

(4.1356668 . . .× 10−15 eV · s)(299792458 m/s)
(2815.2 eV)

= (4.404 . . .× 10−10 m) ≈ 4.40 Å

If we had used the reduced mass of µµ = 186me we would instead have the result of
λµ max ≈ 4.90 Å.
Similarly one could find the n = 2 → n = 1 transition wavelengths (about 6.5 Å or
5.8 Å for the reduced mass value), and the transitions from other energy levels. These
transitions are all in the same X-ray region (sometimes called the “hard X-ray” region)
of the spectrum, with frequencies greater than that of visible or ultra-violet light.



4. (From Eisberg & Resnick, P 4-33, pg 122) Using Bohr’s model, calculate the energy required
to remove the electron from singly ionized helium. [5]

Solution: This is equivalent to finding the ground state energy of singly ionized helium, and
taking the absolute value of that. We want to find the energy needed for a transition from
the n = 1 to the n = ∞ state, with Z = 2.
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= −(4)(13.6 eV)

= −(54.4 eV) = −(8.715 . . .× 10−20 J)

It will take about 54.4 eV or 8.72×10−20 J of energy to remove an electron from singly ionized
helium.

5. (From Eisberg & Resnick, P 4-35, pg 122) A 3.00 eV electron is captured by a bare nucleus
of helium. If a 2400 Å photon is emitted, into what level was the electron captured? [5]

Solution: Energy is conserved in this interaction. The initial energy is just the given kinetic
energy of the electron, Ei = Ki = 3.00 eV, since the potential energy of atom is zero when
the electron is far away from the nucleus. The final energy of the system is made up of the
energy of the photon Ephoton = hc/λ plus the energy of the electron in the n = 1 state in the
helium atom (Z = 2).
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Ephoton =
hc

λ
=

(4.1356668 . . .× 10−15 eV · s)(299792458 m/s)
(2400× 10−10 m)

= (5.166 . . . eV)

Ef = Ei

En + Ephoton = Ki

En = Ki − Ephoton
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(2.166 . . . )

(54.4)
= 0.039816 . . .

n2 = 25.11 . . .

n = 5

The electron was captured into the n = 5 level by the bare nucleus of helium.



6. How is the de Broglie wavelength related to Bohr’s quantization of angular momentum? In
this case what is the periodic function that the Wilson-Sommerfeld rule is applied to? Limit
your discussion to about 50 words or so. [10]

Solution: For an electron in a circular orbit of a Bohr atom, requiring that the orbital angular
momentum is quantized by L = n~ is equivalent to the requirement that the circumference
of the orbit is exactly an integral number of de Broglie wavelengths, 2πr = nλ. Each of
these conditions implies the other, and each is implied by the other, so stating either one as
a postulate is sufficient to have the other one as a result.

In this case, the periodic function in question is the angle θ of the electron in the orbit, which
repeats itself once per orbit. As a function it is a “sawtooth”, rising from zero at a constant
rate and then dropping back to zero discontinuously every 2π rad = 360◦.

7. (From Eisberg & Resnick, P 4-43, pg 123) Assume the angular momentum of the earth of
mass m⊕ = 6.0×1024 kg due to its motion around the sun at a radius r⊕ = 1.5×1011 m to be
quantized according to Bohr’s relation L = nh/2π. What is the value of the quantum number
n? Could such quantization be detected? [10]

Solution: Since L = m⊕v⊕r⊕ = nh/2π and v⊕ = 2πr⊕/T where T is one year or 31 556 926
seconds, we have

n = 2π
L

h
= 2π

m⊕v⊕r⊕
h

= 2π
m⊕2πr⊕r⊕

hT

=
m⊕(2πr⊕)2

hT

=
(6.0× 1024 kg)4π2(1.5× 1011 m)2

(6.6260 . . .× 10−34 J · s)(3.1556 . . .× 107 s)
= 2.5488 . . .× 1074.

This is a very large value for n. In order to differentiate between n and n + 1, we would need
to know the measured values of m⊕ and r⊕ and the other parameters to more than 70 digits
of accuracy. For example since the diameter of a proton is about 10−15 m, we would need to
know r⊕ to within about 1011+15−74 = 10−48 of the size of a proton! Clearly this is impossible.

Headstart for next week, Week 07, starting Monday 2004/11/01:
– Review Section 2.3.6 “The Schrödinger equation” in “Simple Nature” by Crowellk
– Read Chapter 5 “Schroedinger’s Theory of Quantum Mechanics” in Eisberg & Resnick
– – Section 5.1 “Introduction”
– – Section 5.2 “Plausibility Argument Leading to Schroedinger’s Equation”
– – Section 5.3 “Born’s Interpretation of Wave Functions”


