Physics 202H - Introductory Quantum Physics I Homework \#05

Fall 2004 Due 5:01 PM, Monday 2004/10/18
[55 points total]
"Journal" questions. Briefly share your thoughts on the following questions:

- Have you ever noticed any physics (or science or math or technology if you cannot recall a physics example) issue/idea/result presented incorrectly in the general media or popular press? In a nonscience course? What was it? What, if anything, should be done about this type of problem? Is it a problem? Why or why not?
- Any comments about this week's activities? Course content? Assignment? Lab?

1. (From Eisberg \& Resnick, Q 4-3, pg 119) List objections to the Thomson model of the atom. Limit your discussion to about 50 words or so.
2. (From Eisberg \& Resnick, P 3-17, pg 82) Electrons incident on a crystal undergo refraction due to an attractive potential of about 15 V that crystals present to electrons (due to the positive ions in the crystal lattice). If the angle of incidence of an electron beam is 45°, and the electrons have an incident energy of 100 eV , what is the angle of refraction?
[10]
3. (From Eisberg \& Resnick, P 3-18, pg 82) What accelerating voltage would be required for electrons in an electron microscope to obtain the same ultimate resolving power as that which could be obtained from a " γ-ray microscope" using $0.2 \mathrm{MeV} \gamma$ rays?
[10]
4. (From problem 2-20, "Simple Nature", Crowell, pg 105) Use the Heisenberg uncertainty principle to estimate the minimum velocity of a proton or neutron in a ${ }^{208} \mathrm{~Pb}$ nucleus, which has a diameter of about $13 \mathrm{fm}\left(1 \mathrm{fm}=10^{-15} \mathrm{~m}\right)$. Assume that the speed is non-relativistic, and then check at the end whether this assumption was warranted.
5. (From Eisberg \& Resnick, P 4-8, pg 121, with modifications)
(a) Show that the fraction of α-particles scattered by an angle Θ or larger in Rutherford scattering is

$$
\begin{equation*}
f=\left(\frac{1}{4 \pi \epsilon_{0}}\right)^{2} \pi \rho t\left(\frac{z Z e^{2}}{M v^{2}}\right)^{2} \cot ^{2}(\Theta / 2) \tag{10}
\end{equation*}
$$

(b) What fraction of $5.59 \mathrm{MeV} \alpha$-particles from the decay of ${ }^{222} \mathrm{Rn}$, incident on a gold foil of thickness $1 \mu \mathrm{~m}$, will be deflected by an angle of $\pi / 2 \mathrm{rad}$ or larger?

Headstart for next week, Week 06, starting Monday 2004/10/18:

- Read Chapter 2.4 "The Atom" in "Simple Nature" by Crowellk
- Read Chapter 4 "Bohr's Model of the Atom" in Eisberg \& Resnick
- - Section 4.5 "Bohr's Postulates"
- - Section 4.6 "Bohr's Model"
- - Section 4.7 "Correction for Finite Nuclear mass"
- - Section 4.8 "Atomic Energy States"
- - Section 4.9 "Interpretation of the Quantization Rules"
- - Section 4.10 "Sommerfeld's Model"
- - Section 4.11 "The Correspondence Principle"
- - Section 4.12 "A Critique of the Old Quantum Theory"

