
Physics 202H - Introductory Quantum Physics I
Homework #04 - Solutions

Fall 2004 Due 5:01 PM, Tuesday 2004/10/12

[70 points total]

“Journal” questions. Briefly share your thoughts on the following questions:
– Give an example of a time you made use of physics knowledge you gained from a physics course,
outside of schoolwork. What physics phenomena have you noticed outside of the classroom? Have
you noticed or made use of quantum physics outside of class? In what context?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Eisberg & Resnick, Q 2-23, pg 52) What is wrong with taking the geometrical inter-
pretation of a cross section as literally true? Limit your discussion to about 50 words or
so. [10]

Solution: The geometrical interpretation implies that the target particles take up a certain
fraction of the target’s area, and any particles that hit in that area will be affected. In fact,
each particle that strikes the target at any location on the target has a chance of being af-
fected, depending on what the cross section is. For a large number of small particles, the
differences between the geometrical and the probabilistic interpretations in terms of calcula-
tions are practically non-existent, but they would lead to very different answers if applied at
the microscopic level.

2. (From Eisberg & Resnick, P 2-29, pg 54) A particular pair is produced such that the positron
is at rest and the electron has a kinetic energy of 1.0 MeV moving in the direction of flight of
the pair-producing photon.

(a) Neglecting the energy transferred to the nucleus of the nearby atom, what is the energy
of the incident photon? [5]
Solution: The final energy is made up of the kinetic energy of the electron plus the
mass energy of the electron and the positron. If we neglect the energy transferred to the
nucleus, the initial energy of the incident photon should be equal to this final energy:

Ephoton = Ei = Ef = K + me+c2 + me−c2

= K + 2mec
2

= 1.0 MeV + 2(0.5110 MeV)
= 2.022 MeV

Ephoton ≈ 2.0 MeV ≈ 3.2× 10−13 J



(b) What percentage of the photon’s momentum is transferred to the nucleus? [5]
Solution: The momentum of the photon can be calculated from its energy, and the
momentum of the electron (the only thing moving at the end of the interaction) can also
be calculated, so the nucleus will have momentum equal to the difference between the
two. We need to establish some relationships between kinetic energy, total energy, and
momentum for the electron, namely:
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Thus for the electron, pe− is given by
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The momentum of the nucleus is then
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Since we want the percentage, we need to divide through by pphotonc and multiply by
100%:

pnucleus

pphoton
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= 1−
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K2 + 2Kmec2

K + 2mec2

= 1− (1.4219 . . . MeV)
(2.022 MeV)

= 1− (0.7032 . . . )
= (0.2967 . . . )

Thus approximately 29.7% of the photon’s momentum is transferred to the nucleus.



3. (From Eisberg & Resnick, P 2-34, pg 54) What is the thickness of a lead slab which will
attenuate a beam of 10 keV x rays by a factor of 100? Use the data of Eisberg & Resnick,
Figure 2-17, pg 49. [10]

Solution: The word “attenuate” means “to reduce in volume”, so we want to find the thick-
ness of lead that will reduce the intensity of the beam by a factor of 100, ie. so that the initial
intensity is 100 times greater than the final intensity: Ii = 100If . Using the data from the
table in the text, we find that the total cross section for lead interacting with 10 keV x rays
is somewhere between 10−20 and 10−19 cm2. In order to estimate this value of σ, we need to
realized that the vertical scale of the graph is logarithmical rather than linear, and σ is NOT
around 1.4× 10−20 cm2 but rather σ ≈ 10−19.6 cm2 ≈ 2.5× 10−20 cm2.

For lead, we can get some physical properties from http://www.chemicalelements.com/. The
mass density of lead is about 11.34 g/cm3, and the atomic mass of lead is about 207.2 amu =
207.2 g/mol. Since 1 mol = 6.02214199 × 1023 atoms, the number of atoms of lead per cubic
centimetre is about:

ρ =
11.34 g

cm3

mol
207.2 g

6.02214199× 1023 atoms
mol

= 3.29590 . . .× 1022 atoms/cm3 ≈ 3.3× 1022 atoms/cm3

Note that the units of this parameter are atoms/cm3, but in most cases we will ignore the
“atoms” part to the same extent that we ignore the units of “chance of interaction per atom”
part of the units for cross sections.

Given these values, since we know how the intensity is a function of the material’s thickness,
we can compute the necessary thickness:

If = Iie−σρt =⇒
If

Ii
= e−σρt
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1
(2.5× 10−20 cm2)(3.3× 1022 1/cm3)

ln (100)

= 5.562 . . .× 10−3 cm

≈ 56 µm = 5.6× 10−7 m

http://www.chemicalelements.com/elements/pb.html


4. (From Eisberg & Resnick, Q 3-11, pg 80) Could crystallographic studies be carried out with
protons? With neutrons? Limit your discussion to about 50 words or so. [10]

Solution: Crystallographic studies rely on the interference effects of the incident beam when
reflected or refracted off of the various planes making up the crystal lattice being studied.
This type of interference depends on the wavelength of the beam, and the interaction between
the beam constituents and the atoms that make up the crystal. Just like photons, protons
and neutrons do have wavelengths, so they can all be used for crystallographic studies.

Using electrons or protons for crystallography is certainly possible, but since protons are
much more massive than electrons, they will have much larger wavelengths for the same
energy/accelerating potential. Equivalently the massive particle will need to be moving slower
than the less massive particle to have the same wavelength. Neutrons would have similar
wavelengths to protons of the same energy (since they have virtually the same mass), but
the interaction between the neutrons and the crystal would have to be a nuclear interaction
rather than an electromagnetic interaction since the neutron is electrically uncharged. Thus
the neutron would be more sensitive to the nuclear structure of the crystal constituents than
the charged particles which would be more sensitive to the molecular structures, influenced of
course by the overall energies of the probing particles.

Web searches turn up a wealth of information about “neutron crystallography” and “electron
crystallography”, but essentially nothing for “proton crystallography”, reflecting the fact that
using protons does not give one significant advantages over using electrons, and electrons are
much much easier to work with.

5. (From Eisberg & Resnick, P 3-2, pg 81) The wavelength of the yellow spectral emission of
sodium is λ = 5890 Å. At what kinetic energy would an electron have the same de Broglie
wavelength? [10]

Solution: We know that the de Broglie wavelength is given by λ = h/p, so the momentum of
the electron with this wavelength is given by p = h/λ. For the non-relativistic case, we know
that p = mv and K = mv2/2 so

K =
1
2
mv2 =

p2

2m
=

h2

2mλ2

=
(4.1356668 . . .× 10−15 eV · s)2

2(0.511× 106 eV/c2)(5.89× 10−7 m)2

= 4.3356 . . .× 10−6 eV ≈ 4.34 µeV ≈ 6.95× 10−25 J

Since this is such a small energy compared to the rest mass energy of the electron of 0.511 MeV,
the non-relativistic result is valid.



6. (From Eisberg & Resnick, P 3-7, pg 81) A particle of charge e and rest mass m0 is accelerated
to relativistic speeds by an accelerating potential V .

Solution: From this information, we know that the particle has kinetic energy of K = eV .

(a) Show that the de Broglie wavelength of the particle is given by: [10]
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Solution: Since this problem is explicitly relativistic, we cannot use the non-relativistic
expressions relating particle momentum and kinetic energy. Instead we must use the
proper relativistic ones, namely:
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Unfortunately it is unclear how to get from this stage to the given relationship. However,
if we work from the given relationship backwards, we should be able to arrive at the point
where we have gotten to thus far.
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Since (1) is identical to (3), we have shown that the relation (2) holds.



(b) Show how this agrees with λ = h/p in the non-relativistic limit. [10]
Solution: It should be noted that λ = h/p is always true, not only in the non-relativistic
limit (we used it in the first part of this question), and the question is actually asking us
to demonstrate that when using a non-relativistic approximations for p, K, etc. that (2)
can be shown to be equivalent to λ = h/p = h/mv.
In the non-relativistic limit, (2) can be simplified since the kinetic energy K = eV is
much smaller than the rest-mass energy m0c

2, thus eV/2m0c
2 ≈ 0 and K ≈ p2/2m0 or
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Headstart for next week, Week 05, starting Tuesday 2004/10/12:
– Read Chapter 2.3 “Matter as a Wave” in “Simple Nature” by Crowellk
– Read Chapter 3 “De Broglie’s Postulate – Wavelike Properties of Particles” in Eisberg & Resnick
– – Section 3.3 “The Uncertainty Principle”
– – Section 3.4 “Properties of Matter Waves”
– – Section 3.5 “Some Consequences of the Uncertainty Principle”
– – Section 3.6 “The Philosophy of Quantum Theory”
– Read Chapter 2.4 “The Atom” in “Simple Nature” by Crowellk
– Read Chapter 4 “Bohr’s Model of the Atom” in Eisberg & Resnick
– – Section 4.1 “Thompson’s Model”
– – Section 4.2 “Rutherford’s Model”
– – Section 4.3 “The Stability of the Nuclear Atom”
– – Section 4.4 “Atomic Spectra”


