
Physics 202H - Introductory Quantum Physics I
Homework #11 - Solutions

Fall 2004 Due 5:01 PM, Monday 2004/12/06

[65 points total]

“Journal” questions. Briefly share your thoughts on the following questions:
– How did the expectation for the course match with how the course actually went? Did you meet
your own goals for the course? Did your goals or expectations for the course change through the
semester? In what ways?
– Any comments about this week’s activities? Course content? Assignment? Lab?

1. (From Eisberg & Resnick, Q 6-22, pg 227) In the n = 3 state, the probability density function
for a particle in a box is zero at two positions between the walls of the box. How then can the
particle ever move across these positions? Limit your discussion to about 50 words or so. [10]

Solution: This problem is based on a confusion of terms. The probability density function
does not really describe a particle that is bouncing between the walls of the box, occupying
various positions as it travels back and forth, but rather the probability density function gives
a method of finding the probability of measuring the particle in various regions. Thus it is
perfectly valid to have regions with non-zero probability of measuring the particle separated
by regions with zero probability of measuring the particle. The wave function for a particle in
a box does not describe a travelling wave, but rather a standing wave, like a wave on a string,
which can (and does) have zero nodes at various positions.

2. (From Eisberg & Resnick, P 6-7, pg 228) Consider a particle passing over a rectangular
potential barrier. Write the general solutions, presented in Eisberg & Resnick, Section 6-5,
which give the form of ψ in the different regions of the potential.

(a) Find four relations between the five arbitrary constants by matching ψ and dψ/dx at the
boundaries between these regions. (Hint: Use the same notation as Eisberg & Resnick,
Section 6-5 for A, B, C, etc. to make it easier to compare results.) [10]
Solution: The potential energy function V (x) with E > V0 looks like figure 1.
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Figure 1: Barrier potential, E > V0

Following Eisberg & Resnick, the time-independant Schroedinger equation has different



forms for each region, specifically

− ~2

2m
d2ψ1(x)

dx2
= Eψ1(x), x < 0, Region 1,

− ~2

2m
d2ψ2(x)

dx2
= (E − V0)ψ2(x), 0 <x < a, Region 2,

− ~2

2m
d2ψ1(x)

dx2
= Eψ1(x), a <x, Region 3.

Solutions to the TISE in each region are, most generally

ψ1(x) = Aeik1x +Be−ik1x, x < 0, Region 1,

ψ2(x) = F eik2x +Ge−ik2x, 0 <x < a, Region 2,

ψ3(x) = Ceik3x +De−ik3x, a <x, Region 3.

where

k1 = k3 =
√

2mE
~

and k2 =

√
2m(E − V0)

~
.

Note that Eisberg & Resnick use kIII which is equal to k2 above. The derivatives of the
functions are

dψ1(x)
dx

= ik1Aeik1x − ik1Be−ik1x, x < 0, Region 1,

dψ2(x)
dx

= ik2F eik2x − ik2Ge−ik2x, 0 <x < a, Region 2,

dψ3(x)
dx

= ik3Ceik3x − ik3De−ik3x, a <x, Region 3.

Since ψ and its derivative are finite, single-valued, and continuous, we can apply the
following continuity relationships

[ψ1(x)]x=0 = [ψ2(x)]x=0 ,

[
dψ1(x)

dx

]
x=0

=
[
dψ2(x)

dx

]
x=0

, (2.01)

[ψ2(x)]x=a = [ψ3(x)]x=a ,

[
dψ2(x)

dx

]
x=a

=
[
dψ3(x)

dx

]
x=a

. (2.02)

We also know that since there should be no particles coming in from the far right moving
in the negative x direction, D must be zero. Applying the continuity relationships (2.01)
and (2.02), and dividing through by i where appropriate gives us

A+B = F +G (2.03)
k1A− k1B = k2F − k2G (2.04)

F eik2a +Ge−ik2a = Ceik3a (2.05)

k2F eik2a − k2Ge−ik2a = k3Ceik3a. (2.06)

Thus equations (2.03), (2.04), (2.05), and (2.06) are the four necessary relationships
between the five arbitrary constants A, B, C, F , and G.



(b) Use these relations to evaluate the transmission coefficient T , thereby verifying (Eisberg
& Resnick, Equation 6-51, pg 201). (Hint: First eliminate F and G, the amplitudes in the
centre region, leaving relations between A, B, and C. Then eliminate B the amplitude
of the reflected wave.) [10]
Solution: Multiplying (2.05) by k2 and adding (2.06) we get

k2F eik2a + k2Ge−ik2a = k2Ceik3a

k2F eik2a − k2Ge−ik2a = k3Ceik3a

⇒ 2k2F eik2a + 0 = (k2 + k3)Ceik3a

F =
(k2 + k3)

2k2
Ceik3ae−ik2a =

(k2 + k3)
2k2

Cei(k3−k2)a. (2.07)

Multiplying (2.05) by −k2 and adding (2.06) we get

−k2F eik2a − k2Ge−ik2a = −k2Ceik3a

k2F eik2a − k2Ge−ik2a = k3Ceik3a

⇒ 0− 2k2Ge−ik2a = (−k2 + k3)Ceik3a

G =
(k2 − k3)

2k2
Ceik3aeik2a =

(k2 − k3)
2k2

Cei(k3+k2)a. (2.08)

Substituting (2.07) and (2.08) into (2.03) gives us:

A+B =
(k2 + k3)

2k2
Cei(k3−k2)a +

(k2 − k3)
2k2

Cei(k3+k2)a

=
Ceik3a

2k2

[
(k2 + k3)e−ik2a + (k2 − k3)eik2a

]
.

Since e−ik2a = cos (k2a)− i sin (k2a) and eik2a = cos (k2a) + i sin (k2a), we have

A+B =
Ceik3a

2k2
[(k2 + k3)(cos (k2a)− i sin (k2a)) + (k2 − k3)(cos (k2a) + i sin (k2a))]

=
Ceik3a

2k2
[2k2 cos (k2a)− i2k3 sin (k2a)]

A+B =
Ceik3a

k2
[k2 cos (k2a)− ik3 sin (k2a)] . (2.09)

Similarly, substituting (2.07) and (2.08) into (2.04) gives us:

k1(A−B) =
k2(k2 + k3)

2k2
Cei(k3−k2)a − k2(k2 − k3)

2k2
Cei(k3+k2)a

A−B =
k2Ceik3a

2k1k2

[
(k2 + k3)e−ik2a − (k2 − k3)eik2a

]
=
Ceik3a

2k1

[
(k2 + k3)e−ik2a − (k2 − k3)eik2a

]
=
Ceik3a

2k1
[(k2 + k3)(cos (k2a)− i sin (k2a))− (k2 − k3)(cos (k2a) + i sin (k2a))]

=
Ceik3a

2k1
[2k3 cos (k2a)− i2k2 sin (k2a)]

A−B =
Ceik3a

k1
[k3 cos (k2a)− ik2 sin (k2a)] . (2.10)



To get rid of B, we can add (2.09) and (2.10) to get

A+B =
Ceik3a

k2
[k2 cos (k2a)− ik3 sin (k2a)]

A−B =
Ceik3a

k1
[k3 cos (k2a)− ik2 sin (k2a)]

⇒ 2A+ 0 = Ceik3a

[(
k2

k2
+
k3

k1

)
cos (k2a)− i

(
k3

k2
+
k2

k1

)
sin (k2a)

]
A =

Ceik3a

2

[(
k2

k2
+
k3

k1

)
cos (k2a)− i

(
k3

k2
+
k2

k1

)
sin (k2a)

]
=
Ceik3a

2

[(
k1k2 + k2k3

k1k2

)
cos (k2a)− i

(
k1k3 + k2k2

k1k2

)
sin (k2a)

]
A =

Ceik3a

2k1k2
[(k1k2 + k2k3) cos (k2a)− i (k1k3 + k2k2) sin (k2a)] (2.11)

A∗ =
C∗e−ik3a

2k1k2
[(k1k2 + k2k3) cos (k2a) + i (k1k3 + k2k2) sin (k2a)] .

At this point we could simplify a bit before finding T = (k3C
∗C)/(k1A

∗A) since we know that
k3 = k1, however, if we keep both k1 and k3 explicitly in the expression, we will end up with a
more general solution that does not depend on having the potential energy in Region 1 equal
to the potential energy in Region 3. So using (2.11) we can calculate T−1 by

T−1 =
k1A

∗A

k3C∗C
=

k1

4k2
1k

2
2k3

[
(k1k2 + k2k3)

2 cos2 (k2a) + (k1k3 − k2k2)
2 sin2 (k2a)

]
=

1
4k1k2

2k3

[
(k1k2 + k2k3)

2 cos2 (k2a) + (k1k3 + k2k2)
2 sin2 (k2a)

]
. (2.12)

We know that k3 = k1, so putting that into (2.12) gives us

T−1 =
1

4k1k2
2k1

[
(k1k2 + k2k1)

2 cos2 (k2a) + (k1k1 + k2k2)
2 sin2 (k2a)

]
=

1
4k2

1k
2
2

[
(2k2k1)

2 cos2 (k2a) +
(
k2

1 + k2
2

)2 sin2 (k2a)
]

=

[
cos2 (k2a) +

1
4

(
k2

1 + k2
2

k1k2

)2

sin2 (k2a)

]
. (2.13)

With some trig knowledge, we have that cos2 (k2a) = 1− sin2 (k2a), so (2.13) gives us

T−1 =

[
1− sin2 (k2a) +

(
k2

1 + k2
2

)2
4k2

1k
2
2

sin2 (k2a)

]

=
[
1− 4k2

1k
2
2

4k2
1k

2
2

sin2 (k2a) +
k4

1 + 2k2
1k

2
2 + k4

2

4k2
1k

2
2

sin2 (k2a)
]

=
[
1 +

k4
1 − 2k2

1k
2
2 + k4

2

4k2
1k

2
2

sin2 (k2a)
]

=

[
1 +

1
4

(
k2

1 − k2
2

k1k2

)2

sin2 (k2a)

]
. (2.14)



The values of k1 and k2 give us

(
k2

1 − k2
2

)2 =
(

2mE
~2

− 2m(E − V0)
~2

)2

=
(

2mV0

~2

)2

(k1k2)
2 =

(√
2mE
~

√
2m(E − V0)

~

)2

=
(

2m
~2

)2

E(E − V0).

With these relations (2.14) gives us

T−1 =

[
1 +

1
4

(
2mV0

~2

)2(
2m
~2

)2
E(E − V0)

sin2 (k2a)

]

=
[
1 +

1
4
V 2

0 sin2 (k2a)
E(E − V0)

]

=

1 +
sin2 (k2a)

4 E
V0

(
E
V0
− 1
)


T =

1 +
sin2 (k2a)

4 E
V0

(
E
V0
− 1
)
−1

. (2.15)

Equation (2.15) is the desired Eisberg & Resnick, Equation 6-51.

3. (From Eisberg & Resnick, P 6-9, pg 228) A proton and a deuteron (a particle with the same
charge as a proton, but twice the mass) attempt to penetrate a rectangular potential barrier
of height 10MeV and thickness 10−14 m. Both particles have total energies of 3MeV.

(a) Use qualitative arguments to predict which particle has the highest probability of suc-
ceeding. [5]
Solution: Since they have equal energies, the momentum of the more massive particle
will be smaller (K = p2/2m), and the velocity of the less massive particle will be greater
(K = mv2/2). With a greater velocity, we might expect that the proton is more likely
to penetrate deeper into the barrier, and thus is more likely to make it all the way
through. This is also born out by Eisberg & Resnick equations 6-49 and 6-50, where a
more massive particle would have a larger value for kII and thus a smaller value for T
since −kII appears in the exponent.

(b) Evaluate quantitatively the probability of success for both particles.. [10]
Solution: The values for kpa and kda are

kpa =

√
2mp(V0 − E)

~
a kda =

√
2md(V0 − E)

~
a

=

√
2(938.3 MeV/c2)(7MeV)
(0.6582× 10−15 eV · s)

(10−14 m) =

√
2(2mp)(V0 − E)

~
a =

√
2kpa

kpa = 5.80839 . . . kda = 8.21431 . . . .

We need to calculate the transmission coefficient given by Eisberg & Resnick, Equation 6-
49 (we cannot really use 6 50 since that is only valid for kIIa� 1, which it is not in this



case.

T =

1 +

(
ekIIa − e−kIIa

)2
16 E

V0

(
1− E

V0

)
−1

=

1 +
sinh2 (kIIa)

4 E
V0

(
1− E

V0

)
−1

=

[
1 +

sinh2 (kIIa)
4 3

10

(
1− 3

10

)]−1

=
[
1 +

100
84

sinh2 (kIIa)
]−1

Tp =
[
1 +

100
84

sinh2 (5.80839 . . . )
]−1

= 3.02936 . . .× 10−5 ≈ 3.0× 10−5

Td =
[
1 +

100
84

sinh2 (8.21431 . . . )
]−1

= 2.46409 . . .× 10−7 ≈ 2.5× 10−7

The proton will be transmitted about 0.003% of the time, while the deuteron will be
transmitted about 0.000025% of the time, and clearly Tp > Td showing that the proton
is more likely to make it through the barrier.

4. (From Eisberg & Resnick, P 6-18, pg 229) A particle of total energy 9V0 is incident from the
−x axis on a potential given below. Find the probability that the particle will be transmitted
on through to the positive side of the x axis, x > a. [10]

V (x) =


8V0, x < 0,
0, 0 < x < a,

5V0, a < x.

Solution: The potential energy function V (x) with E > V0 looks like figure 2.

Region 1 Region 2 Region 3
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Figure 2: Un-symmetric well potential

We might be tempted to just use the T value found for a step function of the given height
at x = 0 and multiply that by the T value for the step function of the given height at x = a
to give an overall T . In general, probabilities do multiply together to find the probability of
two successive events, however for situations like this it is not a valid method. In effect, the
reflected waves from the different boundaries create interference that makes the transmission
coefficient a function of not only the potential heights, but also the thickness a.

Since E > V (x) in all regions, the set up for this problem is identical with the set up for
problem 2 above, up through (2.12). The only difference is in the values of k1, k2, and k3,



namely

k1 =

√
2m(E − V (x))

~

=

√
2m(9V0 − 8V0)

~
=
√

2mV0

~

k2 =

√
2m(9V0)

~
= 3

√
2mV0

~
= 3k1

k3 =

√
2m(9V0 − 5V0)

~
= 2

√
2mV0

~
= 2k1.

Putting k2 = 3k1 and k3 = 2k1 into (2.12) gives us

T−1 =
1

4k1k2
2k3

[
(k1k2 + k2k3)

2 cos2 (k2a) + (k1k3 + k2k2)
2 sin2 (k2a)

]
=

1
4k19k2

12k1

[
(k13k1 + 3k12k1)

2 cos2 (3k1a) + (k12k1 + 3k13k1)
2 sin2 (3k1a)

]
=

1
72
[
81 cos2 (3k1a) + 121 sin2 (3k1a)

]
=

81
72

[
cos2 (3k1a) +

121
81

sin2 (3k1a)
]

=
81
72

[
1− sin2 (3k1a) +

121
81

sin2 (3k1a)
]

=
81
72

[
1 +

40
81

sin2 (3k1a)
]

=
1
72
[
81 + 40 sin2 (3k1a)

]
T−1 =

[
9
8

+
5
9

sin2 (3k1a)
]−1

= 72
[
81 + 40 sin2 (3k1a)

]−1

Thus, the probability of the particle being transmitted varies between a maximum of 8/9 ≈
0.88889 (when a is such that sin (3k1a) = 0, namely a = nπ/(3k1)) and a minimum of
72/121 ≈ 0.6 (when a is such that sin2 (3k1a) = 1, namely a = (n+ 1/2)π/(3k1)).

5. (From Eisberg & Resnick, P 6-20, pg 230) Two possible eigenfunctions for a particle moving
freely in a region of length a, but strictly confined to that region, are shown in Eisberg
& Resnick, Figure 6-37, pg 230. When the particle is in the state corresponding to the
eigenfunction ψI, its total energy is 4 MeV.
(a) What is its total energy in the state corresponding to ψII? [5]

Solution: ψI has three nodes and two anti-nodes, so it is the first excited state, so n = 2.
Since the energy of the state is proportional to n2, the energy of the n = 2 state will be
22 = 4 times the energy of the n = 1 state, so the energy of the n = 1 state must be
E1 = 1 MeV. ψII has four nodes and three anti-nodes, so it is the second excited state
with n = 3. EII = E3 = 33E1 = 9MeV.

(b) What is the lowest possible total energy for the particle in this system? [5]
Solution: As stated above, the lowest energy is the n = 1 state with E1 = 1MeV.

Headstart for next week, Week 12, starting Monday 2004/12/06:
– Read Chapter 6 “Solutions of Time-Independent Schroedinger Equation” in Eisberg & Resnick
– – Section 6.9 “The Simple Harmonic Oscillator Potential”
– – Section 6.10 “Summary”
– Review notes, review texts, review assignments, learn material, do well on exam


