Convex sets and simplex method

Things left to be proved:
- The correspondence between corner point solutions and basic solutions
- Why it is enough just consider the corner points?

The matrix form of LP model

A general LP model in the standard form is

Max \(z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \)

Subject to

\[a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \leq b_1 \]
\[a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n \leq b_2 \]
\[\vdots \]
\[a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n \leq b_m \]

and

\[x_1, x_2, \ldots, x_n \geq 0 \]

After we added the slack variables, it becomes

Max \(z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \)

Subject to

\[a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n + x_{n+1} = b_1 \]
\[a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n + x_{n+2} = b_2 \]
\[\vdots \]
\[a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n + x_{m+m} = b_m \]

and

\[x_1, x_2, \ldots, x_n, x_{n+1}, \ldots, x_{m+m} \geq 0 \]

Let
The system can be expressed as

\[
\begin{align*}
\text{Max} & \quad z = cx \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

Definition: A set \(S \) is convex if, for any two points, \(x_1, x_2 \in S \), and \(\alpha \in [0, 1] \) imply that \(\alpha x_1 + (1 - \alpha) x_2 \in S \).

An equivalent definition would be:

Definition: A set \(S \) is convex if, for any positive integer \(p \) and \(p \) points, \(x_1, x_2, \ldots, x_p \in S \) and
\(\alpha_1, \alpha_2, \ldots, \alpha_p \in [0, 1] \), \(\alpha_1 + \alpha_2 + \cdots + \alpha_p = 1 \) imply that
\(\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_p x_p \in S \).

\(\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_p x_p \) is called a convex combination of \(x_1, x_2, \ldots, x_p \). If none of \(\alpha_1, \alpha_2, \ldots, \alpha_p \) is 0 or 1, then it is a strict convex combination of \(x_1, x_2, \ldots, x_p \).

Definition: \(x \) is a basic feasible solution if it satisfies the constraints, and the columns of \(A \) that correspond to the positive components of \(x \) are linearly independent.

Theorem: The set \(S = \{ x : Ax = b, x \geq 0 \} \) is a convex set. (4.5-3)

Definition: A corner point or extreme point of a convex set \(S \) is a point \(x \) such that \(x \) is not a strict convex combination of any two other points in \(S \).

Theorem: A point \(x \) of the set \(S = \{ x : Ax = b, x \geq 0 \} \) is a corner point of \(S \) if and only if it is a basic feasible solution.

Reminder: \(Ax = b \) can be understood as \(\sum x_i A_i = b \). Here \(A_i \) is the \(i \)-th column of \(A \).

Proof of the theorem: Without loss of generality, we may assume that the components of \(x \) are zero except for the first \(p \) components, namely...
\[x = \begin{bmatrix} x \\ 0 \end{bmatrix} \]

where \(x = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} \)

We also denote the first \(p \) columns of \(A \) by \(\bar{A} \), namely \(\bar{A} = \begin{bmatrix} A_1 & \cdots & A_p \end{bmatrix} \). We know that \(\bar{A}x = Ax = b \).

(\(\Rightarrow \)) Suppose that \(A_1, \ldots, A_p \) are linearly dependent, then there are \(w_1, \ldots, w_p \) not all zero such that \(\sum w_i A_i = 0 \) or if we let \(w = \begin{bmatrix} w_1 \\ \vdots \\ w_p \end{bmatrix} \), we have \(\bar{A}w = 0 \). Since \(x_1 > 0, \ldots, x_p > 0 \), we may choose a \(\delta \) small enough so that \(x_i \pm \delta w_i > 0 \) for all \(i = 1, \ldots, p \). (We can pick \(\delta < \min \left\{ \frac{x_i}{|w_i|} \right\} \).

Let \(y = \bar{x} + \delta \bar{w}, z = x - \delta \bar{w}, y = \begin{bmatrix} y \\ 0 \end{bmatrix}, z = \begin{bmatrix} z \\ 0 \end{bmatrix} \) then we have \(y \geq 0, z \geq 0 \). Also we have \(A_y = \bar{A}y = \bar{A}(x + \delta \bar{w}) = b, Az = \bar{A}z = \bar{A}(x + \delta \bar{w}) = b \). Therefore \(y, z \in S \). Also we have \(\frac{1}{2}y + \frac{1}{2}z = x \), a contradiction to the fact that \(x \) is a corner point.

(\(\Leftarrow \)) Suppose that \(x \) is not a corner point. Then there are distinct points \(y, z \) in \(S \) such that \(x = ay + (1 - a)z \) for some \(0 < a < 1 \). Since \(y, z \geq 0 \), the last \(n - p \) components of \(y, z \) must be zero. Then \(w = x - y \) has last \(n - p \) components being zero as well. Therefore \(Aw = \bar{A}w = 0 \).

\(w \neq 0 \Rightarrow w \neq 0 \). That implies that the first \(p \) columns of \(A \) are linearly dependent.

Theorem: Let \(S = \{ x : Ax = b, x \geq 0 \} \). If \(S \) is bounded, then every point in \(S \) is a convex combination of some corner points \(x_1, \ldots, x_n \).

[Proof] Let \(x \) be a point in \(S \). We show that \(x \) is a convex combination of some corner points of \(S \) by using induction and an idea similar to the one used in the previous proof.

Induction on the number of positive components in \(x \). Obviously that if that number is zero then \(x \) is a BF solution therefore a corner point itself. Suppose that \(x \) is not a corner point, then the columns of \(A \) corresponding to the positive components of \(x \) are linearly dependent. To simplify the notations, we may assume that these are the first \(r \) columns of \(A \):

\[x = \begin{bmatrix} x_1 \\ \vdots \\ x_r \\ 0 \\ \vdots \\ 0 \end{bmatrix} \]

There are \(p_1, p_2, \ldots, p_r \) not all of them zero such that \(p_1A_1 + p_2A_2 + \cdots + p_rA_r = 0 \). Let
We have, and

\[\mathbf{p} = \begin{bmatrix} p_1 \\ \vdots \\ p_r \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \]

then

\[A\mathbf{p} = p_1 \mathbf{A}_1 + p_2 \mathbf{A}_2 + \cdots + p_r \mathbf{A}_r + \mathbf{0} + \cdots + \mathbf{0} = \mathbf{0}. \]

For all \(\varepsilon > 0 \), we have

\[A(\mathbf{x} + \varepsilon \mathbf{p}) = A\mathbf{x} + \varepsilon A\mathbf{p} = \mathbf{b} + \mathbf{0} = \mathbf{b} \]

So \(\mathbf{x} + \varepsilon \mathbf{p} \) is also in \(S \) if it satisfies the nonnegative constraints. It is the same for \(\mathbf{x} - \varepsilon \mathbf{p} \).

Since \(x_i > 0 \) for \(i = 1, \ldots, r \). So we can choose \(\varepsilon_1 \) small enough such that \(x_i + \varepsilon_1 p_i \geq 0 \) for all \(i \) and we can choose \(\varepsilon_1 > 0 \) such that for one or more \(i \) \((1 \leq i \leq r) \), \(x_i + \varepsilon_1 p_i = 0 \) (otherwise \(S \) would be unbounded). Similarly we can choose \(\varepsilon_2 > 0 \) such that \(x_i - \varepsilon_2 p_i \geq 0 \) for all \(i \) and \(x_i - \varepsilon_2 p_i = 0 \) for at least one \(i \). (Remember that both \(\mathbf{x} + \varepsilon_1 \mathbf{p} \) and \(\mathbf{x} - \varepsilon_2 \mathbf{p} \) are in \(S \).)

Let \(\mathbf{y} = \mathbf{x} + \varepsilon_1 \mathbf{p} \) and \(\mathbf{z} = \mathbf{x} - \varepsilon_2 \mathbf{p} \). Easy to see that

\[\mathbf{x} = \frac{\varepsilon_2}{\varepsilon_1 + \varepsilon_2} \mathbf{y} + \frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2} \mathbf{z} \]

so \(\mathbf{x} \) is a convex combination of \(\mathbf{y} \) and \(\mathbf{z} \). Both \(\mathbf{y} \) and \(\mathbf{z} \) has at least one less positive components than \(\mathbf{x} \). By the inductive hypothesis, \(\mathbf{y} \) and \(\mathbf{z} \) are convex combinations of the corner points of \(S \):

\[\mathbf{y} = \sum \alpha_i \mathbf{y}_i \]

\[\mathbf{z} = \sum \beta_i \mathbf{z}_i \]

where \(\sum \alpha_i = \sum \beta_i = 1, \alpha_i \geq 0, \beta_i \geq 0 \) for all \(i \) and \(\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{z}_1, \mathbf{z}_2, \ldots \) are corner points of \(S \). Let \(\gamma_1 = \frac{\varepsilon_2}{\varepsilon_1 + \varepsilon_2} \) and \(\gamma_2 = \frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2} \). We have

\[\mathbf{x} = \gamma_1 \mathbf{y} + \gamma_2 \mathbf{z} \]

\[= \sum \gamma_1 \alpha_i \mathbf{y}_i + \sum \gamma_2 \beta_i \mathbf{z}_i \]

Since \(\sum \gamma_1 \alpha_i = \sum \gamma_2 \beta_i = 1 \) and \(\gamma_1 \alpha_i \geq 0, \gamma_2 \beta_i \geq 0 \) for all \(i \), \(\mathbf{x} \) is a convex combination of the corner points.

Theorem: If a linear programming problem has an optimal solution, then it has an optimal solution on a corner point of the feasible region.

Proof: Suppose that \(\mathbf{z}^* = \mathbf{c}\mathbf{x} \) is an optimal solution. If \(\mathbf{x} \) is a corner point, then we are done. Suppose that \(\mathbf{x} \) is not a corner point, then there are corner points of the feasible region such that there are \(\mathbf{x}_i \) and \(\alpha_i \) that \(\sum \alpha_i \mathbf{x}_i = \mathbf{x} \) and \(\sum \alpha_i = 1 \). Then

\[\mathbf{c}\mathbf{x} = \mathbf{c}(\sum \alpha_i \mathbf{x}_i) = \sum \alpha_i \mathbf{c}\mathbf{x}_i \leq \sum \alpha_i \mathbf{z}^* \leq \mathbf{z}^*. \]

Since \(\mathbf{z}^* = \mathbf{c}\mathbf{x} \), every step here is an equality. So \(\mathbf{c}\mathbf{x}_i = \mathbf{z}^* \) for all \(i \). Also this shows that \(\mathbf{x} \) is only optimal if it is a convex combination of optimal corner point solutions. That is a part of 4-5.4.

Theorem: The feasible region of a linear programming problem has a finite number of corner points.

Proof: Suppose that there are \(n \) equations and \(n + m \) variables. Then there are at most \(\binom{m+n}{n} \) ways to choose that \(n \)-linearly independent columns of \(\mathbf{A} \).

Theorem: If a corner point has no adjacent corner point that has better objective function value, then
there is no other corner point with better objective function value.

Proof: Clear from the row zero of the simplex tableau.